Tag Archives: mechanics solutions

Expressing the Density of Water in SI Units


Water has a density of 1.94 slug/ft³. What is the density expressed in SI units? Express the answer to three significant figures.

Engineering Mechanics: Statics 13th Edition by RC Hibbeler, Problem 1-19
Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 1-17


Solution:

ρw=(1.94slug1ft3)(14.59kg1slug)(1ft30.30483m3)=(1.94slug1ft3)(14.59kg1slug)(1ft30.30483m3)=999.6kgm3=1.00Mg/m3\begin{align*} \rho _w & =\left(\frac{1.94\:\text{slug}}{1\:\text{ft}^3}\right)\left(\frac{14.59\:\text{kg}}{1\:\text{slug}}\right)\left(\frac{1\:\text{ft}^3}{0.3048^3\:\text{m}^3}\right) \\ & =\left(\frac{1.94\:\text{slug}}{1\:\text{ft}^3}\right)\left(\frac{14.59\:\text{kg}}{1\:\text{slug}}\right)\left(\frac{1\:\text{ft}^3}{0.3048^3\:\text{m}^3}\right) \\ & =999.6\:\frac{\text{kg}}{\text{m}^3}\\ & =1.00\:\text{Mg/m}^3\\ \end{align*}

Advertisements
Advertisements

Mechanics of Materials: An Integrated Learning Approach 3rd Edition by Timothy A. Philpot Problem P1.2


A 2024-T4 aluminum tube with an outside diameter of 2.50 in. will be used to support a 27-kip load. If the axial normal stress in the member must be limited to 18 ksi, determine the wall thickness required for the tube.


Solution:

We are given the following values:

Outside Diameter,D=2.50 inAxial Load,P=27 kipsMaximum Axial Stress,σ=18 ksiInside Diameter,d=D2t\begin{align*} \text{Outside Diameter}, D & = 2.50\ \text{in} \\ \text{Axial Load}, P & = 27\ \text{kips} \\ \text{Maximum Axial Stress}, \sigma & = 18\ \text{ksi}\\ \text{Inside Diameter}, d & = D-2t \end{align*}

We are solving for the unknown wall thickness of the tube, tt.

From the definition of normal stress, solve for the minimum area required to support a 27-kip load without exceeding a stress of 18 ksi

σ=PAAmin=PσAmin=27kips18ksiAmin=1.500in2\begin{align*} \sigma & =\frac{P}{A} \\ A_{\text{min}} & =\frac{P}{\sigma } \\ A_{\text{min}} & = \frac{27\:\text{kips}}{18\:\text{ksi}} \\ A_{\text{min}} & = 1.500\:\text{in}^2 \end{align*}

The cross-sectional area of the aluminum tube is given by

A=π4(D2d2)A=\frac{\pi }{4}\left(D^2-d^2\right)

Set this expression equal to the minimum area and solve for the maximum inside diameter, dd

A=π4(D2d2)A=π4[(2.50 in)2d2]1.500 in2=π4[(2.50 in)2d2]4(1.500 in2)=π[(2.50 in)2d2]4(1.500 in2)π=(2.50 in)2d2d2=(2.50 in2)4(1.500 in2)πd=(2.50 in2)4(1.500 in2)πd=2.08330 in\begin{align*} A & =\frac{\pi }{4}\left(D^2-d^2\right) \\ A & = \frac{\pi }{4}\left[\left(2.50\ \text{in}\right)^2-d^2\right] \\ 1.500\ \text{in}^2 & = \frac{\pi }{4}\left[\left(2.50\ \text{in}\right)^2-d^2\right] \\ 4 \left( 1.500\ \text{in}^2 \right) & = \pi \left[\left(2.50\ \text{in}\right)^2-d^2\right] \\ \frac{4 \left( 1.500\ \text{in}^2 \right)}{\pi} & = \left(2.50\ \text{in}\right)^2-d^2 \\ d^{2} & = \left( 2.50\ \text{in}^{2} \right) - \frac{4 \left( 1.500\ \text{in}^2 \right)}{\pi} \\ d & = \sqrt{\left( 2.50\ \text{in}^{2} \right) - \frac{4 \left( 1.500\ \text{in}^2 \right)}{\pi}} \\ d & = 2.08330\ \text{in} \end{align*}

The outside diameter DD, the inside diameter dd, and the wall thickness tt are related by

D=d+2tD = d+2t

Therefore, the minimum wall thickness required for the aluminum tube is

t=Dd2t=2.50in2.08330in2t=0.208 in  (Answer)\begin{align*} t & =\frac{D-d}{2} \\ t & = \frac{2.50\:\text{in}-2.08330\:\text{in}}{2} \\ t & = 0.208\ \text{in} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}