Tag Archives: Momentum

Problem 6-8: An integrated problem involving circular motion, momentum, and projectile motion


Integrated Concepts

When kicking a football, the kicker rotates his leg about the hip joint.

(a) If the velocity of the tip of the kicker’s shoe is 35.0 m/s and the hip joint is 1.05 m from the tip of the shoe, what is the shoe tip’s angular velocity?

(b) The shoe is in contact with the initially stationary 0.500 kg football for 20.0 ms. What average force is exerted on the football to give it a velocity of 20.0 m/s?

(c) Find the maximum range of the football, neglecting air resistance.


Solution:

Part A

From the given problem, we are given the following values: v=35.0\ \text{m/s} and r=1.05\ \text{m}. We are required to solve for the angular velocity \omega.

The linear velocity, v and the angular velocity, \omega are related by the equation

v=r\omega \ \text{or} \ \omega=\frac{v}{r}

If we substitute the given values into the formula, we can directly solve for the value of the angular velocity. That is,

\begin{align*}
\omega & = \frac{v}{r} \\ \\
\omega & = \frac{35.0\ \text{m/s}}{1.05\ \text{m}} \\ \\
\omega & = 33.3333\ \text{rad/sec} \\ \\
\omega & = 33.3 \ \text{rad/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Part B

For this part of the problem, we are going to use Newton’s second law of motion in term of linear momentum which states that the net external force equals the change in momentum of a system divided by the time over which it changes. That is

F_{net} = \frac{\Delta p}{\Delta t} = \frac{m\left( v_f - v_i \right)}{t}

For this problem, we are given the following values: m=0.500\ \text{kg}, t=20.0\times 10^{-3} \ \text{s}, v_{f}=20.0\ \text{m/s}, and v_{i}=0. Substituting all these values into the equation, we can solve directly for the value of the net external force.

\begin{align*}
F_{net} & = \frac{\left( 0.500\ \text{kg} \right)\left( 20.0\ \text{m/s}-0\ \text{m/s} \right)}{20.0\times 10^{-3}\ \text{s}} \\ \\
F_{net} & = 500\ \text{N} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Part C

This is a problem on projectile motion. In this particular case, we are solving for the range of the projectile. The formula for the range of a projectile is

R=\frac{v_{0}^2 \sin 2\theta}{g}

We are asked to solve for the maximum range, and we know that the maximum range happens when the angle \theta is 45^\circ .

\begin{align*}
R & = \frac{\left( 20.0\ \text{m/s} \right)^{2} \sin \left( 2\left( 45^\circ  \right) \right)}{9.81 \ \text{m/s}^2} \\ \\
R & = 40.7747\ \text{m} \\ \\
R & = 40.8 \ \text{m} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements
Solution Guides to College Physics by Openstax Chapter 8 Banner

Chapter 8: Linear Momentum and Collisions

Advertisements

Linear Momentum and Force

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Problem 6

Advertisements

Impulse

Problem 7

Problem 8

Problem 9

Problem 10

Problem 11

Problem 12

Problem 13

Problem 14

Problem 15

Problem 16

Problem 17

Problem 18

Problem 19

Problem 20

Problem 21

Problem 22

Advertisements

Conservation of Momentum

Problem 23

Problem 24

Problem 25

Problem 26

Problem 27

Advertisements

Elastic Collisions in One Dimension

Problem 28

Problem 29

Problem 30

Advertisements

Inelastic Collisions in One Dimension

Problem 31

Problem 32

Problem 33

Problem 34

Problem 35

Problem 36

Problem 37

Problem 38

Problem 39

Problem 40

Problem 41

Problem 42

Problem 43

Problem 44

Advertisements

Collisions of Point Masses in Two Dimensions

Problem 45

Problem 46

Problem 47

Problem 48

Problem 49

Problem 50

Problem 51

Problem 52

Advertisements

Introduction to Rocket Propulsion

Problem 53

Problem 54

Problem 55

Problem 56

Problem 57

Problem 58

Problem 59

Problem 60

Problem 61

Problem 62

Problem 63

Problem 64

Advertisements

Advertisements
Advertisements