Tag Archives: momentum of a large ship

College Physics by Openstax Chapter 8 Problem 2


(a) What is the mass of a large ship that has a momentum of 1.60×109 kg⋅m/s, when the ship is moving at a speed of 48.0 km/h? (b) Compare the ship’s momentum to the momentum of a 1100-kg artillery shell fired at a speed of 1200 m/s.


Solution:

Linear momentum (momentum for brevity) is defined as the product of a system’s mass multiplied by its velocity. In symbols, linear momentum p\textbf{p} is defined as

p=mv,\textbf{p}=m \textbf{v},

where mm is the mass of the system and v\textbf{v} is its velocity.

Part A. The Mass of a Large Ship Given its Momentum

For this part, we are given the following quantities of the ship:

pship=1.60×109 kgm/svship=48.0 km/h=13.3333 m/s\begin{align*} \textbf{p}_{\text{ship}} & = 1.60 \times 10^{9}\ \text{kg} \cdot \text{m}/\text{s} \\ \textbf{v}_{\text{ship}} & = 48.0\ \text{km}/\text{h} = 13.3333\ \text{m}/\text{s} \end{align*}

From the formula of momentum, we can solve for mm in terms of p\textbf{p} and v\textbf{v}. Then we can substitute the given values to solve for the mass of the ship.

pship=mshipvshipmship=pshipvshipmship=1.60×109 kgm/s13.3333 m/smship=120000000 kgmship=1.20×108 kg  (Answer)\begin{align*} \textbf{p}_{\text{ship}} & = m_{\text{ship}} \textbf{v}_{\text{ship}} \\ m_{\text{ship}} & = \frac{\textbf{p}_{\text{ship}}}{\textbf{v}_{\text{ship}}} \\ m_{\text{ship}} & = \frac{1.60 \times 10^{9}\ \text{kg} \cdot \text{m}/\text{s}}{13.3333\ \text{m}/\text{s}} \\ m_{\text{ship}} & = 120000000\ \text{kg} \\ m_{\text{ship}} & = 1.20 \times 10^{8} \ \text{kg}\ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Part B. Comparing the Momentum of a Large Ship with an Artillery Shell

The artillery shell has a mass of 1100 kilograms and a speed of 1200 m/s. Therefore, its momentum is

pshell=mshellvshellpshell=(1100 kg)(1200 m/s)pshell=1320000 kgm/spshell=1.32×106 kgm/s\begin{align*} \textbf{p}_{\text{shell}} & = m_{\text{shell}} \textbf{v}_{\text{shell}} \\ \textbf{p}_{\text{shell}} & = \left( 1100\ \text{kg} \right)\left( 1200\ \text{m}/\text{s} \right) \\ \textbf{p}_{\text{shell}} & = 1320000\ \text{kg} \cdot \text{m}/\text{s} \\ \textbf{p}_{\text{shell}} & = 1.32 \times 10^{6}\ \text{kg} \cdot \text{m}/\text{s} \end{align*}

Comparing the momentum of the large ship and the shell, we have.

pshippshell=1.60×109 kgm/s1.32×106 kgm/spshippshell=1212.1212pship=1212.1212 pshell  (Answer)\begin{align*} \frac{\textbf{p}_{\text{ship}}}{\textbf{p}_{\text{shell}}} & = \frac{1.60 \times 10^{9}\ \text{kg} \cdot \text{m}/\text{s}}{1.32 \times 10^{6}\ \text{kg} \cdot \text{m}/\text{s}} \\ \frac{\textbf{p}_{\text{ship}}}{\textbf{p}_{\text{shell}}} & = 1212.1212 \\ \textbf{p}_{\text{ship}} & = 1212.1212\ \textbf{p}_{\text{shell}} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

The ship has a momentum that is about 1200 times the momentum of the artillery shell.