PROBLEM:
A car engine moves a piston with a circular cross section of 7.500±0.002 cm diameter a distance of 3.250±0.001 cm to compress the gas in the cylinder.
(a) By what amount is the gas decreased in volume in cubic centimeters?
(b) Find the uncertainty in this volume.
SOLUTION:
Part A
The average volume is
\begin{align*} V & =\pi r^2h \\ & =\pi \left(\frac{7.5\:\text{cm}}{2}\right)^2\left(3.25\:\text{cm}\right) \\ & =143.5806\:\text{cm}^3 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \\ \end{align*}
Part B
Solve for the percent uncertainties of each dimension
\begin{align*} \%\:unc_r & =\frac{0.002\:\text{cm}}{7.500\:\text{cm}}\times 100\%=0.027\% \\ \%\:unc_h & =\frac{0.001\:\text{cm}}{3.25\:\text{cm}}\times 100\%=0.031\% \\ \end{align*}
The percent uncertainty in the volume is the combined effect of the uncertainties of the dimensions
\text{\%\:unc}_{vol}=0.027\%+0.031\%=0.058\%
The uncertainty in the volume is
\delta _{vol}=\frac{0.058}{100}\times 143.5806=0.083\:\text{cm}^3 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
You must be logged in to post a comment.