Since astronauts in orbit are apparently weightless, a clever method of measuring their masses is needed to monitor their mass gains or losses to adjust diets. One way to do this is to exert a known force on an astronaut and measure the acceleration produced. Suppose a net external force of 50.0 N is exerted and the astronaut’s acceleration is measured to be 0.893 m/s2. (a) Calculate her mass. (b) By exerting a force on the astronaut, the vehicle in which they orbit experiences an equal and opposite force. Discuss how this would affect the measurement of the astronaut’s acceleration. Propose a method in which recoil of the vehicle is avoided.
Solution:
We are given the following: \sum F = 50.0 \ \text{N}, and a=0.893 \ \text{m/s}^{2}.
Part A. We can solve for the mass, m by using Newton’s second law of motion.
\begin{align*}
\sum F & = ma \\
50.0 \ \text{N} & = m \left( 0.893 \ \text{m/s}^{2} \right) \\
m & = \frac{50.0 \ \text{N}}{0.893 \ \text{m/s}^{2}} \\
m & = 56.0 \ \text{kg}\ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}
Part B. The measured acceleration is equal to the sum of the accelerations of the astronauts and the ship. That is
a_{measured}=a_{astronaut}+a_{ship}
If a force acting on the astronaut came from something other than the spaceship, the spaceship would not undergo a recoil. \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
A coin is dropped from a hot-air balloon that is 300 m above the ground and rising at 10.0 m/s upward. For the coin, find (a) the maximum height reached, (b) its position and velocity 4.00 s after being released, and (c) the time before it hits the ground.
Solution:
Part A
Consider Figure A.
We are interested in two positions. Position 1 is where the coin is dropped. At this position, the coin is 300 m above the ground, the time is 0 s, and the velocity is 10.0 m/s upward.
Position 2 is the highest point of the coin reaches. At this position, the velocity is equal to 0 m/s.
Position 1 is the initial position and position 2 is the final position. Solve for the value of y2.
\therefore The maximum height reached by the coin is about 305 meters from the ground.
Part B
We do not know the position 4 seconds after the coin has been released, the answer can be above or below the initial point. We can actually use one of the kinematical equations to solve for the final position given the time. Here, the initial position is the point of release and the final position is the point of interest at 4.00 seconds after release.
\therefore The coin is at a height of 262 meters above the ground 4.00 seconds after release. That is, the coin is already dropping and it is already below the release point.
Solving for the velocity 4.00 seconds after release considering the same initial and final position.
\therefore The coin has a velocity of 29.2 m/s directed downward 4.00 seconds after it is released. This confirms that the coin is indeed moving downwards at this point.
Part C
Considering figure C, we have two positions. Position 1 is the point of release 300 m above the ground with a velocity of 10 m/s upward. This is time 0 s.
The second position is at the ground where y=0 m. We are interested at the time in this position.
Considering position 1 as the initial position and position 2 as the final position.
A steel ball is dropped onto a hard floor from a height of 1.50 m and rebounds to a height of 1.45 m. (a) Calculate its velocity just before it strikes the floor. (b) Calculate its velocity just after it leaves the floor on its way back up. (c) Calculate its acceleration during contact with the floor if that contact lasts 0.0800 ms (8.00×10−5 s) . (d) How much did the ball compress during its collision with the floor, assuming the floor is absolutely rigid?
Solution:
Part A
For this part, we shall consider Figure A.
We will be considering the two positions as shown. The first position is when the ball is dropped from a height of 1.50 meters. For this position, we know that y1=1.50 m, t1=0 s, and vy1=0 m/s.
Position 2 is immediately after the ball hits the floor. For this position, we do not the time elapse and the velocity but we know that the height is zero. That is y2=0 m.
Position 1 is the initial position and position 2 is the final position. Solving for vy2, we have
\therefore The steel ball has a velocity of about 5.42 m/s directed downward when it strikes the floor.
Part B
Figure B shows the two positions we are interested in to solve for this part.
Position 1 is at the floor immediately just after the ball hits it. At this initial position, we have y1=0 m, and t1= 0 s. We do not know the velocity at this point.
At position 2, the ball bounced back to its second peak. We know that at the peak of a free falling body, the velocity is zero. So, for this final position, we have y2=1.45 m, and vy2=0 m/s. We do not know the time at this position.
Position 1 is the initial position while position 2 is the final position. Solving for the initial velocity we have
\therefore The steel ball has a velocity of about 5.33 m/s directed upward immediately after it leaves the floor.
Part C
From our answers in Part A and Part B, we have a change in velocity from -5.42 m/s to 5.33 m/s. So, in this case the initial velocity is v1=-5.42 m/s and the final velocity is v2=5.33 m/s. We can compute for the acceleration:
The period of compression happens when the ball has a velocity of -5.42 m/s until it reaches 0 m/s. We shall solve for the change in displacement for this two given velocities. The initial velocity is -5.42 m/s and the final velocity is 0 m/s. The acceleration during this period is the one solved in Part C, a=1.34×105 m/s2.
A ball is thrown straight up. It passes a 2.00-m-high window 7.50 m off the ground on its path up and takes 0.312 s to go past the window. What was the ball’s initial velocity? Hint: First consider only the distance along the window, and solve for the ball’s velocity at the bottom of the window. Next, consider only the distance from the ground to the bottom of the window, and solve for the initial velocity using the velocity at the bottom of the window as the final velocity.
Solution:
Consider Figure A. We shall be considering the three positions shown.
First, we have position 1 where the motion starts. Here, we know that y1=0 and t1=0, but we do not know vy1.
Position 2 is at the bottom of the window. We know that it is 7.50 meters from where the motion started. So we have y2=7.50 meters. We do not know the time and velocity at this point.
Then we have position 3 at the top of the window where the overall height is 9.50 meters, y3=9.50. We also do not know the velocity and time elapsed in this position.
Consider positions 2 and 3. The initial position in this case is at position 2 and the final position is at position 3. We know that the difference of time between this two positions is 0.312 seconds. We can say that
We have computed the velocity of the ball at the bottom of the window.
Next, we shall consider positions 1 and 2. In this consideration, position 1 will be considered the initial position while position2 is the final position.
The world long jump record is 8.95 m (Mike Powell, USA, 1991). Treated as a projectile, what is the maximum range obtainable by a person if he has a take-off speed of 9.5 m/s? State your assumptions.
Solution:
We are required to solve for the maximum distance. To do this, we can use the formula for the range of a projectile motion. However, we need the following assumptions:
The jumper leaves the ground in a 45° angle from the horizontal, for maximum horizontal displacement.
The jumper is on level ground, and the motion started from the ground.
The cannon on a battleship can fire a shell a maximum distance of 32.0 km. (a) Calculate the initial velocity of the shell. (b) What maximum height does it reach? (At its highest, the shell is above 60% of the atmosphere—but air resistance is not really negligible as assumed to make this problem easier.) (c) The ocean is not flat, because the Earth is curved. Assume that the radius of the Earth is 6.37×103 km . How many meters lower will its surface be 32.0 km from the ship along a horizontal line parallel to the surface at the ship? Does your answer imply that error introduced by the assumption of a flat Earth in projectile motion is significant here?
Solution:
Part A
We are given the range of the projectile motion. The range is 32.0 km. We also know that for the projectile to reach its maximum distance, it should be fired at 45°. So from the formula of range,
We are solving for the maximum height here, which happened at the mid-flight of the projectile. The vertical velocity at this point is zero. Considering all this, the formula for the maximum height is derived to be
A right triangle is formed with the legs, the horizontal distance and the radius of the earth, and the hypotenuse is the sum of the radius of the earth and the distance d, which is the unknown in this problem. Using Pythagorean Theorem, and converting all units to meters, we have
Based on the result of the calculations, we can say that the numbers in the figure are verified. The very small differences are only due to round-off errors.
Verify the ranges for the projectiles in Figure 3.40(a) for θ=45º and the given initial velocities.
Solution:
To verify the given values in the figure, we need to solve for individual ranges for the given initial velocities. To do this, we shall use the formula
A rugby player passes the ball 7.00 m across the field, where it is caught at the same height as it left his hand. (a) At what angle was the ball thrown if its initial speed was 12.0 m/s, assuming that the smaller of the two possible angles was used? (b) What other angle gives the same range, and why would it not be used? (c) How long did this pass take?
Solution:
To illustrate the problem, consider the following figure:
Part A
We are given the 7-meter range, R, and the initial velocity, vo, of the projectile. We have R=7.0 m, and vo=12.0 m/s. To solve for the angle of the initial velocity, we will use the formula for range
This angle is not used as often, because the time of flight will be longer. In rugby that means the defense would have a greater time to get into position to knock down or intercept the pass that has the larger angle of release.
Part C
We can use the x-component of the motion to solve for the time of flight.
\Delta \text{x}=\text{v}_\text{x}\text{t}
We need the horizontal component of the velocity. We should be able to solve for the component since we are already given the initial velocity and the angle.
You must be logged in to post a comment.