Tag Archives: Physics PDF solutions

College Physics by Openstax Chapter 3 Problem 29


An archer shoots an arrow at a 75.0 m distant target; the bull’s-eye of the target is at same height as the release height of the arrow. (a) At what angle must the arrow be released to hit the bull’s-eye if its initial speed is 35.0 m/s? In this part of the problem, explicitly show how you follow the steps involved in solving projectile motion problems. (b) There is a large tree halfway between the archer and the target with an overhanging horizontal branch 3.50 m above the release height of the arrow. Will the arrow go over or under the branch?


Solution:

To illustrate the problem, consider the following figure:

The archer and the target at 75 meter range

Part A

We are given the range of 75-meter range, R, and the initial velocity, vo, of the projectile. We have R=75.0 m, and vo=35.0 m/s. To solve for the angle of the initial velocity, we will use the formula for range

\text{R}=\frac{\text{v}^{2}_{\text{o}}\:\sin 2\theta _{\text{o}}}{g}

Solving for θo in terms of the other variables, we have

\begin{align*}

\text{gR} & =\text{v}_{\text{o}}^2\:\sin 2\theta _{\text{o}} \\
\sin \:2\theta _{\text{o}} & =\frac{\text{gR}}{\text{v}_{\text{o}}^2} \\
2\theta _\text{o} & =\sin ^{-1}\left(\frac{\text{gR}}{\text{v}_{\text{o}}^2}\right) \\
\theta _\text{o} & =\frac{1}{2}\sin ^{-1}\left(\frac{\text{gR}}{\text{v}_{\text{o}}^2}\right) \\
\theta _o & =\frac{1}{2}\sin ^{-1}\left[\frac{\left(9.81\:\text{m/s}^2\right)\left(75.0\:\text{m}\right)}{\left(35.0\:\text{m/s}\right)^2}\right] \\
\theta _o & =18.46^{\circ} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}
 
\end{align*}

Part B

We know that halfway, the maximum height of the projectile occurs. Also at this instant, the vertical velocity is zero. We can solve for the maximum height and compare it with the given height of 3.50 meters.

The maximum height can be computed using the formula

\text{h}_{\text{max}}=\frac{\text{v}_{\text{oy}}^2}{2\text{g}}

To compute for the maximum height, we need the initial vertical velocity, voy. Since we know the magnitude and direction of the initial velocity, we have

\begin{align*}

\text{v}_{\text{oy}} & =\left(35.0\:\text{m/s}\right)\sin 18.46^{\circ} \\
\text{v}_{\text{oy}} & =11.08\:\text{m/s}
 
\end{align*}

Therefore, the maximum height is

\begin{align*}

\text{h}_{\max } & =\frac{\left(11.08\:\text{m/s}\right)^2}{2\left(9.81\:\text{m/s}^2\right)} \\
\text{h}_{\max } & =6.26\:\text{m} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}

 
\end{align*}

We have known that the path of the arrow is above the branch of the tree. Therefore, the arrow will go through.


Advertisements
Advertisements

College Physics by Openstax Chapter 3 Problem 28


(a) A daredevil is attempting to jump his motorcycle over a line of buses parked end to end by driving up a 32º ramp at a speed of 40.0 m/s (144 km/h) . How many buses can he clear if the top of the takeoff ramp is at the same height as the bus tops and the buses are 20.0 m long? (b) Discuss what your answer implies about the margin of error in this act—that is, consider how much greater the range is than the horizontal distance he must travel to miss the end of the last bus. (Neglect air resistance.)


Solution:

To illustrate the problem, consider the following figure:

The projectile path of the daredevil from the ramp

Part A

To determine the number of buses that the daredevil can clear, we will divide the range of the projectile path by 20 m, the length of 1 bus. That is

\text{no. of bus}=\frac{\text{Range}}{\text{bus length}}

First, we need to solve for the range.

\begin{align*}
\text{Range} & =\frac{\text{v}_{\text{o}}^2\:\sin 2\theta }{\text{g}} \\
\text{Range} & =\frac{\left(40.0\:\text{m/s}\right)^2\sin \left[2\left(32^{\circ} \right)\right]}{9.81\:\text{m/s}^2} \\
\text{Range} & =146.7\:\text{m} \\

\end{align*}

Therefore, the number of buses cleared is

\begin{align*}
\text{no. of buses} & =\frac{146.7\:\text{m}}{20\:\text{m}} \\
\text{no. of buses} & =7.34\:\text{buses} \\
\text{no. of buses} & =7\:\text{buses}

\qquad \qquad{\color{DarkOrange} \left( \text{Answer} \right)} \\
\end{align*}

Therefore, he can only clear 7 buses. 

Part B

He clears the last bus by 6.7 m, which seems to be a large margin of error, but since we neglected air resistance, it really isn’t that much room for error.


Advertisements
Advertisements

College Physics by Openstax Chapter 3 Problem 27


A ball is thrown horizontally from the top of a 60.0-m building and lands 100.0 m from the base of the building. Ignore air resistance. (a) How long is the ball in the air? (b) What must have been the initial horizontal component of the velocity? (c) What is the vertical component of the velocity just before the ball hits the ground? (d) What is the velocity (including both the horizontal and vertical components) of the ball just before it hits the ground?


Solution:

To illustrate the problem, consider the following figure:

The path of the ball thrown at the top of a 60 m building.

Part A

The problem states that the initial velocity is horizontal, this means that the initial vertical velocity is zero. We are also given the height of the building (which is a downward displacement), so we can solve for the time of flight using the formula y=voyt+1/2at2. That is,

\begin{align*}
\text{y} & =\text{v}_{\text{oy}}\text{t}+\frac{1}{2}\text{a}\text{t}^2 \\
 -60\:\text{m}&=0+\frac{1}{2}\left(-9.81\:\text{m/s}^2\right)\text{t}^2 \\
\text{t}^2 & =\dfrac{-60\:\text{m}}{-4.905\:\text{m/s}^2} \\
\text{t}^2 & =12.2324\:\text{s}^2 \\
\text{t} & =3.50\:\text{s} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}

\end{align*}

Part B

To solve for the vox, we will use the formula \text{v}_{\text{ox}}=\frac{\Delta \:\text{x}}{\text{t}}.

\begin{align*}
\text{v}_{\text{ox}} & =\frac{100\:\text{m}}{3.50\:\text{s}} \\
\text{v}_{\text{ox}} & =28.6\:\text{m/s} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}
\end{align*}

Part C

To solve for the velocity as the ball hits the ground, we shall consider two points: (1) at the beginning of the flight, and (2) when the ball hits the ground.

We know that the initial velocity, voy, is zero. To solve for the final velocity, we will use the formula \text{v}_{\text{f}}=\text{v}_{\text{o}}+\text{at}.

\begin{align*}
\text{v}_{\text{f}} & =0+\left(-9.81\:\text{m/s}^2\right)\left(3.50\:\text{s}\right) \\
\text{v}_{\text{f}} & =-34.3\:\text{m/s}

\ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}
\end{align*}

The negative velocity indicates that the motion is downward.

Part D

Since we already know the horizontal and vertical components of the velocity when it hits the ground, we can find the resultant.

\begin{align*}
\text{v} & =\sqrt{\text{v}_{\text{x}}^2+\text{v}_{\text{y}}^2} \\
\text{v} & =\sqrt{\left(28.57\:\text{m/s}\right)^2+\left(-34.34\:\text{m/s}\right)^2} \\
\text{v} & =44.7\:\text{m/s}

\ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}
\end{align*}

The direction of the velocity is

\begin{align*}
\theta_{\text{x}} & =\tan ^{-1}\left|\frac{\text{v}_{\text{y}}}{\text{v}_{\text{x}}}\right| \\
\theta _{\text{x}} & =\tan ^{-1}\left|\frac{-34.34}{28.57}\right| \\
\theta _{\text{x}} & =50.2^{\circ}

\ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}
\end{align*}

The velocity is directed 50.2° down the x-axis.


Advertisements
Advertisements

College Physics by Openstax Chapter 3 Problem 26


A ball is kicked with an initial velocity of 16 m/s in the horizontal direction and 12 m/s in the vertical direction. (a) At what speed does the ball hit the ground? (b) For how long does the ball remain in the air? (c)What maximum height is attained by the ball?


Solution:

To illustrate the problem, consider the following figure:

The path of the projectile with initial horizontal and vertical velocities given.

Part A

Since the starting position has the same elevation as when it hits the ground, the speeds at these points are the same. The final speed is computed by solving the resultant of the horizontal and vertical velocities. That is

\begin{align*}
\text{v}_{\text{f}} & =\sqrt{\left(\text{v}_{\text{ox}}\right)^2+\left(\text{v}_{\text{oy}}\right)^2} \\
\text{v}_{\text{f}} & =\sqrt{\left(16\:\text{m/s}\right)^2+\left(12\:\text{m/s}\right)^2} \\
\text{v}_{\text{f}} & =\sqrt{400\:\text{(m/s)}^2} \\
\text{v}_{\text{f}} & =20\:\text{m/s} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}
\end{align*}

Part B

Consider the two points: (1) the starting point and (2) the highest point.

We know that at the highest point, the vertical velocity is zero. We also know that the total time of the flight is twice the time from the beginning to the top.

So, we shall use the formula \text{t}=\frac{\text{v}_{\text{f}}-\text{v}_{\text{o}}}{\text{a}}.

\begin{align*}
\text{t} & =2\left(\frac{\text{v}_{\text{top}}-\text{v}_{\text{o}}}{\text{a}}\right) \\
\text{t} & =2\left(\frac{0\:\text{m/s}-12\:\text{m/s}}{-9.81\:\text{m/s}^2}\right) \\
\text{t} & =2.45\:\text{s} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}
\end{align*}

Part C

The maximum height attained can be calculated using the formula \left(\text{v}_{\text{f}}\right)^2=\left(\text{v}_{\text{o}}\right)^2+2\text{a}\text{y}.

The maximum height is calculated as follows:

\begin{align*}
\left(\text{v}_{\text{f}}\right)^2 & =\left(\text{v}_{\text{o}}\right)^2+2\text{ay} \\
\text{y}_{\max } & =\frac{\left(\text{v}_{\text{top}}\right)^2-\left(\text{v}_{\text{o}}\right)^2}{2\text{a}} \\
\text{y}_{\max }& =\frac{\left(0\:\text{m/s}\right)^2-\left(12\:\text{m/s}\right)^2}{2\left(-9.81\:\text{m/s}^2\right)} \\
\text{y}_{\max } & =7.34\:\text{m} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}
\end{align*}

Advertisements
Advertisements

College Physics by Openstax Chapter 3 Problem 25


A projectile is launched at ground level with an initial speed of 50.0 m/s at an angle of 30.0º above the horizontal. It strikes a target above the ground 3.00 seconds later. What are the x and y distances from where the projectile was launched to where it lands?


Solution:

Since we do not know the exact location of the projectile after 3 seconds, consider the following arbitrary figure:

The path of the projectile from the ground to a point 3 seconds later.

From the figure, we can solve for the components of the initial velocity.

\begin{align*}
\text{v}_{\text{ox}} &=\left(50\:\text{m/s}\right)\cos 30^{\circ} \\
& =43.3013\:\text{m/s}
\\
\\
\text{v}_{\text{oy}} & =\left(50\:\text{m/s}\right)\sin 30^{\circ} \\
&=25\:\text{m/s}
\\
\end{align*}

So, we are asked to solve for the values of x and y. To solve for the value of the horizontal displacement, x, we shall use the formula x=voxt. That is,

\begin{align*}
\text{x} & =\text{v}_{\text{ox}}\text{t} \\
\text{x} & =\left(43.3013\:\text{m/s}\right)\left(3\:\text{s}\right) \\
\text{x} & =130\:\text{m} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}
\end{align*}

To solve for the vertical displacement, y, we shall use the formula y=voyt+1/2at2. That is

\begin{align*}
\text{y} & =\text{v}_{\text{oy}}\text{t}+\frac{1}{2}\text{a}\text{t}^2 \\
\text{y} & =\left(25\:\text{m/s}\right)\left(3\:\text{s}\right)+\frac{1}{2}\left(-9.81\:\text{m/s}^2\right)\left(3\:\text{s}\right)^2 \\
\text{y} & =30.9\:\text{m} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}
\end{align*}

Therefore, the projectile strikes a target at a distance 129.9 meters horizontally and 30.9 meters vertically from the launching point.


Advertisements
Advertisements

College Physics by Openstax Chapter 3 Problem 24


Suppose a pilot flies 40.0 km in a direction 60º north of east and then flies 30.0 km in a direction 15º north of east as shown in Figure 3.61. Find her total distance R from the starting point and the direction θ of the straight-line path to the final position. Discuss qualitatively how this flight would be altered by a wind from the north and how the effect of the wind would depend on both wind speed and the speed of the plane relative to the air mass.

Figure 3.61

Solution:

The pilot’s displacement is characterized by 2 vectors, A and B, as depicted in Figure 3.61. To determine her total displacement R from the starting point, we need to add the two given vectors. To do this, we individually get the x and y components of each vector. This is presented in the table that follows:

Vectorx-componenty-component
A40\:\cos 60^{\circ} =20\:\text{km} 40\:\sin 60^{\circ} =34.6410\:\text{km}
B 30\:\cos 15^{\circ} =28.9778\:\text{km} 30\:\sin 15^{\circ} =7.7646\:\text{km}
Sum 48.9778\: \text{km} 42.4056 \:\text{km}

The table above indicates east and north as positive components, while west and south indicate negative components. The last row is the sum of the components. These are also the x and y components of the resultant vector.

To calculate the magnitude of the resultant, we simply use the Pythagorean Theorem as follows:

\begin{align*}
\text{R} & = \sqrt{\left(48.9778\:\text{km}\right)^2+\left(42.4056\:\text{km}\right)^2} \\
\text{R} & = 64.8\:\text{km} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)} \\
\end{align*}

The direction of the resultant is calculated as follows:

\begin{align*}
\theta & =\tan ^{-1}\left(\frac{42.4056}{48.9778}\right) \\
\theta & =40.9^{\circ} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}
\end{align*}

Therefore, the pilot’s resultant displacement is about 64.8 km directed 40.9° North of East from the starting island.

Discussion:

If the wind speed is less than the speed of the plane, it is possible to travel to the northeast, but she will travel more to the east than without the wind. If the wind speed is greater than the speed of the plane, then it is no longer possible for the plane to travel to the northeast, it will end up traveling southeast.


Advertisements
Advertisements

College Physics by Openstax Chapter 3 Problem 11


Find the components of vtot along the x- and y-axes in Figure 3.55.

The figure shows v_A directed 22.5° from the positive x-axis, and v_B started from the head of v_A and is directed 23.0° from the resultant. The resultant is given to be 6.72 m/s and is directed 26.5° from v_A. In total, the resultant is measured 49° from the positive x-axis.
Figure 3.55

Solution:

By isolating the vtot from the rest of the other vectors, we come up with the following figure. Also, the x and y-components are shown.

The resultant velocity and its x and y components

The resultant velocity has a magnitude of 6.72 m/s and is directed 49° from the positive x-axis. To solve for the x and y components, we just need to solve the legs of the right triangle formed by the three vectors. That is,

 \text{x-component}=\left(6.72\:\text{m/s}\right)\cos 49^{\circ} =4.41\:\text{m/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\text{y-component}=\left(6.72\:\text{m/s}\right)\sin 49^{\circ} =5.07\:\text{m/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

Advertisements
Advertisements

College Physics by Openstax Chapter 3 Problem 9


Show that the sum of the vectors discussed in Example 3.2 gives the result shown in Figure 3.24.

Figure 3.24

Solution:

So, we are given the two vectors shown below.

Vectors A and B

If we use the graphical method of adding vectors, we can join the two vectors using head-tail addition and come up with the following:

Figure 3.9B: Vectors A and B added graphically

The resultant is drawn from the tail of the first vectors (the origin) to the head of the last vector. The resultant is shown in red in the figure below.

Solve for the value of the angle 𝛼 by geometry.

\alpha = 66^\circ +\left( 180^\circ-112^\circ \right) = 134^\circ

Solve for the magnitude of the resultant using cosine law.

\begin{align*}
R^2 & = A^2+B^2-2AB\cos \alpha \\
R & = \sqrt{A^2+B^2-2AB\cos \alpha} \\
R & = \sqrt{\left( 27.5 \ \text{m} \right)^2+\left( 30.0 \ \text{m} \right)^2-2\left( 27.5\ \text{m} \right)\left( 30.0\ \text{m} \right) \cos 134^\circ} \\
R & =52.9380 \ \text{m} \\
R & = 52.9 \ \text{m} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}
\end{align*}

Solve for 𝛽 using sine law.

\begin{align*}
\frac{\sin \beta}{B} & = \frac{\sin \alpha}{R} \\
\beta & = \sin ^{-1} \left( \frac{B \sin \alpha }{R} \right) \\
\beta & = \sin ^{-1} \left( \frac{30.0\ \text{m} \sin 134^\circ}{52.9380 \ \text{m}} \right) \\
\beta & = 24.0573^\circ
\end{align*}

Finally, solve for 𝜃.

\theta = 66^\circ+24.0573^\circ = 90.1^\circ \ \qquad \ {\color{Orange} \left( \text{Answer} \right)}

The result is in conformity with that in figure 3.24 shown on the question shown above.


Advertisements
Advertisements

College Physics by Openstax Chapter 3 Problem 8


Show that the order of addition of three vectors does not affect their sum. Show this property by choosing any three vectors A, B, and C, all having different lengths and directions. Find the sum A + B + C then find their sum when added in a different order and show the result is the same. (There are five other orders in which A, B, and C can be added; choose only one.)


Solution:

Consider the three vectors shown in the figures below:

Vector A

Vector B

Vector C

First, we shall add them A+B+C. Using the head-tail or graphical method of vector addition, we have the figure shown below.

Figure 3.8B: The resultant force of A+B+C

Now, let us try to find the sum of the three vectors by reordering vectors A, B, and C. Let us try to find the sum of C+B+A in that order. The result is shown below.

Figure 3.8C: The resultant of 3 vectors added in different order.

We can see that the resultant is the same directed from the origin upward. This proves that the resultant must be the same even if the vectors are added in different order.


Advertisements
Advertisements

College Physics by Openstax Chapter 2 Problem 66


Figure 2.68 shows the position graph for a particle for 6 s. (a) Draw the corresponding Velocity vs. Time graph. (b) What is the acceleration between 0 s and 2 s? (c) What happens to the acceleration at exactly 2 s?

position graph for a particle for 6 s.
Figure 2.68

Solution:

Part A

The velocity of the particle is the slope of the position vs time graph. Since the position graph is composed of straight lines, we can say that the velocity is constant for several time ranges.

Time RangeSlope of the Position vs Time Graph
0 to 2 seconds=\frac{2-0}{2-0}=1\:\text{m/s}
2 to 3 seconds=\frac{-3-2}{3-2}=\frac{-5}{1}=-5\:\text{m/s}
3 to 5 seconds=0 \ \text{m/s}
5 to 6 seconds=\frac{-2-\left(-3\right)}{6-5}=\frac{1}{1}=1\:\text{m/s}

Based on the data in the table, we can draw the velocity diagram

velocity vs time graph
velocity vs time graph

Part B

Since the velocity is constant between 0 seconds and 2 seconds, we say that the acceleration is 0.

Part C

Since there is a sudden change in velocity at exactly 2 seconds in a very short amount of time, we say that the acceleration is undefined in this case.


Advertisements
Advertisements