If the sprinter from the previous problem accelerates at that rate for 20 m, and then maintains that velocity for the remainder of the 100-m dash, what will be his time for the race?
Solution:
Solving for the time it takes to reach the first 20 meters.
For the remaining 80 meters, the sprinter has a constant velocity of 12.96 m/s. The sprinter’s time to run the last 80 meters can be computed as follows.
You drive 7.50 km in a straight line in a direction 15º east of north. (a) Find the distances you would have to drive straight east and then straight north to arrive at the same point. (This determination is equivalent to find the components of the displacement along the east and north directions.) (b) Show that you still arrive at the same point if the east and north legs are reversed in order.
Solution:
Part A
Consider the illustration shown.
Let DE be the east component of the distance, and DNbe the north component of the distance.
Repeat Exercise 3.16 using analytical techniques, but reverse the order of the two legs of the walk and show that you get the same final result. (This problem shows that adding them in reverse order gives the same result—that is, B + A = A + B .) Discuss how taking another path to reach the same point might help to overcome an obstacle blocking your other path.
Solution:
Considering the right triangle formed by the vectors A, B, and R. We can solve for the magnitude of R using the Pythagorean Theorem. That is
Solve the following problem using analytical techniques: Suppose you walk 18.0 m straight west and then 25.0 m straight north. How far are you from your starting point, and what is the compass direction of a line connecting your starting point to your final position? (If you represent the two legs of the walk as vector displacements A and B, as in Figure 3.58, then this problem asks you to find their sum R=A+B.)
Solution:
Considering the right triangle formed by the vectors A, B, and R. We can solve for the magnitude of R using the Pythagorean Theorem. That is
Find the north and east components of the displacement from San Francisco to Sacramento shown in Figure 3.57.
Solution:
Consider the following figure.
Using the right triangle formed, we can solve for the east component and the north component. Let SE be the east component and SN be the north component of S.
Find the following for path D in Figure 3.56: (a) the total distance traveled and (b) the magnitude and direction of the displacement from start to finish. In this part of the problem, explicitly show how you follow the steps of the analytical method of vector addition.
Solution:
Part A
Looking at path D, we can see that it moves 2 blocks downward, 6 blocks to the right, 4 blocks upward, and 1 block to the left. Thus, the total distance of path D is
Looking at the initial and final position of path D, the final position is 5 blocks to the right or 600 meters to the right of the initial position, and 2 blocks or 240 meters upward from the initial position. Refer to the figure below.
Using the right triangle, we can solve for the displacement using the Pythagorean Theorem.
(a) Repeat the problem two problems prior, but for the second leg you walk 20.0 m in a direction 40.0º north of east (which is equivalent to subtracting B from A —that is, to finding R’=A−B ). (b) Repeat the problem two problems prior, but now you first walk 20.0 m in a direction 40.0º south of west and then 12.0 m in a direction 20.0º east of south (which is equivalent to subtracting A from B —that is, to finding R”=B−A=−R’ ). Show that this is the case.
(a) Take the slope of the curve in Figure 2.64 to find the jogger’s velocity at t=2.5 s. (b) Repeat at 7.5 s. These values must be consistent with the graph in Figure 2.65.
Solution:
Part A
To find the slope at t=2.5 s, we need the position values at t= 0 s and t=5 s. When t = 0 \ \text{s}, x = 0 \ \text{m}, and when t = 5 \ \text{s}, x = 17.5 \ \text{m}. The velocity at t=2.5 s is
Construct the position graph for the subway shuttle train as shown in Figure 2.18(a). Your graph should show the position of the train, in kilometers, from t = 0 to 20 s. You will need to use the information on acceleration and velocity given in the examples for this figure.
(a) Position of the train over time. Notice that the train’s position changes slowly at the beginning of the journey, then more and more quickly as it picks up speed. Its position then changes more slowly as it slows down at the end of the journey. In the middle of the journey, while the velocity remains constant, the position changes at a constant rate. (b) The velocity of the train over time. The train’s velocity increases as it accelerates at the beginning of the journey. It remains the same in the middle of the journey (where there is no acceleration). It decreases as the train decelerates at the end of the journey. (c) The acceleration of the train over time. The train has positive acceleration as it speeds up at the beginning of the journey. It has no acceleration as it travels at constant velocity in the middle of the journey. Its acceleration is negative as it slows down at the end of the journey.
You must be logged in to post a comment.