College Physics 2.64 – Consistency on the position and velocity diagrams


(a) Take the slope of the curve in Figure 2.64 to find the jogger’s velocity at t = 2.5 s.

(b) Repeat at 7.5 s. These values must be consistent with the graph in Figure 2.65.

Figure 2.64
Figure 2.65

Solution:

The velocity at time 2.5 seconds is 5 m/s.

The velocity at time 7.5 seconds is -4 m/s.


College Physics 2.63 – Constructing a displacement graph


Construct the displacement graph for the subway shuttle train as shown in Figure 2.18(a). Your graph should show the position of the train, in kilometers, from t = 0 to 20 s. You will need to use the information on acceleration and velocity given in the examples for this figure.

2.63


Solution:

The position vs time graph is shown in the figure below. 

2.63b

College Physics 2.62 – Acceleration as the slope of the velocity vs time diagram


By taking the slope of the curve in Figure 2.63, verify that the acceleration is 3.2 m/s²  at t = 10 s.

2.62
Figure 2.63

Solution:

Since the graph is a straight line, we can use the two points before and after the specified time to determine the slope of the line. The slope of the velocity-time graph is the acceleration.

The two points are \left(0,\:165\right)\:and\:\left(20,\:228\right)

The velocityis computed as

a=m=\frac{\Delta y}{\Delta x}

a=\frac{y_2-y_2}{x_2-x_1}

a=\frac{228\:m/s-165\:m/s}{20\:s-0\:s}

a=3.2\:m/s^2

Therefore, the acceleration is verified to be 3.2 m/s² at t=10 s.


College Physics 2.61 – Velocity as slope of position vs time


Using approximate values, calculate the slope of the curve in Figure 2.62 to verify that the velocity at t = 30.0 s is 0.238 m/s. Assume all values are known to 3 significant figures.

2.60
Figure 2.62

Solution:

Since the graph is a straight line, we can use any two points to determine the slope of the line. The slope of the position-time graph is the velocity.

The two points are \left(20,\:6.95\right)\:and\:\left(40,\:11.7\right)

The velocityis computed as

v=m=\frac{\Delta y}{\Delta x}

v=\frac{y_2-y_2}{x_2-x_1}

v=\frac{11.7\:km-6.95\:km}{40\:s-20\:s}

v=0.238\:km/s

Therefore, the velocity is 0.238 km/s.


College Physics 2.60 – Slope of the position vs time diagram


Using approximate values, calculate the slope of the curve in Figure 2.62 to verify that the velocity at t = 10.0 s is 0.208 km/s. Assume all values are known to 3 significant figures.

2.60
Figure 2.62

Solution:

Since the graph is a straight line, we can use any two points to determine the slope of the line. The slope of the position-time graph is the velocity.

The two points are \left(0,\:2.80\right)\:and\:\left(20,\:6.95\right)

The velocityis computed as

v=m=\frac{\Delta y}{\Delta x}

v=\frac{y_2-y_2}{x_2-x_1}

v=\frac{6.95\:km-2.80\:km}{20\:s-0\:s}

v=0.208\:km/s

Therefore, the velocity is 0.208 km/s.


College Physics 2.59 – Analysis of motion diagrams


(a) By taking the slope of the curve in Figure 2.60, verify that the velocity of the jet car is 115 m/s at t = 20 s.

(b) By taking the slope of the curve at any point in Figure 2.61, verify that the jet car’s acceleration is 5.0 m/s².

Figure 2.60
Figure 2.61

Solution:

Part A

Based from the graph shown in figure 2.60, we can choose two points, one before and one after t=20 s. We have the points \left(15,\:988\right)\:and\:\left(25,\:2138\right).

The slope is computed using the formula:

m=\frac{\Delta y}{\Delta x}

m=\frac{2138\:m-988\:m}{25\:s-15\:s}

m=115\:m/s

Therefore, we have verified that the velocity of the jet car is 115 m/s at t=20 seconds. 

Part B

Since the graph is a straight line, we can use any two points to determine the slope of the line. The slope of the velocity-time graph is the acceleration.

The two points are \left(10,\:65\right)\:and\:\left(25,\:140\right)

The acceleration is computed as

a=m=\frac{\Delta y}{\Delta x}

a=\frac{y_2-y_2}{x_2-x_1}

a=\frac{140\:m/s-65\:m/s}{25\:s-10\:s}

a=5\:m/s^2

Therefore, the acceleration is verified to be 5.0 m/s².