Tag Archives: Precision

Problem 1-19: Calculating the percent uncertainty and range of speed with the same percent uncertainty

Advertisements
Advertisements

PROBLEM:

(a) If your speedometer has an uncertainty of 2.0 km/h at a speed of 90 km/h, what is the percent uncertainty?

(b) If it has the same percent uncertainty when it reads 60 km/ h, what is the range of speeds you could be going?


Advertisements
Advertisements

SOLUTION:

Part a

The percent uncertainty is computed as

\text{\% uncertainty}=\frac{2.0\ \text{km/hr}}{90\:\text{km/hr}}\times 100\%=2.2\% \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

Part b

The tolerance of the velocity is

\delta _v=\frac{2.2\:\%}{100\:\%}\times 60\:\text{km/hr}=1\:\text{km/hr}

Therefore, the range of the velocity is 60±1km/h, or that is 59 to 61 km/h. \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)


Advertisements
Advertisements

Problem 1-18: Significant figures, uncertainty, and accuracy of the numbers 99 and 100

Advertisements
Advertisements

PROBLEM:

(a) How many significant figures are in the numbers 99 and 100?

(b) If the uncertainty in each number is 1, what is the percent uncertainty in each?

(c) Which is a more meaningful way to express the accuracy of these two numbers, significant figures or percent uncertainties?


Advertisements
Advertisements

SOLUTION:

Part A

99 has 2 significant figures

100 has 3 significant figures

Part B

\begin{align*}
\frac{1}{99}\times 100\% & =1.0\:\%  \\ 
\frac{1}{100}\times 100\% & =1.00\%
\end{align*}

Part C

Based on the results of parts a and b, the percent uncertainties are more meaningful.


Advertisements
Advertisements

Problem 1-17: Stating the correct significant figures in a given calculation

Advertisements
Advertisements

PROBLEM:

State how many significant figures are proper in the results of the following calculations:

\begin{align*}
\left(a\right)\:\frac{\left(106.7\right)\left(98.2\right)}{\left(46.210\right)\left(1.01\right)} \ \qquad \ \left(b\right)\:\left(18.7\right)^2 \ \qquad \ \left(c\right)\:\left(1.60\times 10^{-19}\right)\left(3712\right)
\end{align*}

Advertisements
Advertisements

SOLUTION:

Part A

The answer is limited by 98.2 and 1.01. They are both 3 significant figures. So the result should be 3 significant figures.

Part B

The answer is limited by 18.7. The answer should be 3 significant figures. So the result should be 3 significant figures.

Part C

The answer is limited by 1.60 which is 3 significant figures. So the result should be 3 significant figures.


Advertisements
Advertisements

Problem 1-16: Solving for the remaining soda after the removal of some volume

Advertisements
Advertisements

PROBLEM:

A can contains 375 mL of soda. How much is left after 308 mL is removed?


Advertisements
Advertisements

SOLUTION:

What is left is calculated as

\begin{align*}
\text{Volume left} & =375 \ \text{mL}-308 \ \text{mL} \\
& = 67 \ \text{mL} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Therefore, 67 mL of soda is left.


Advertisements
Advertisements