Tag Archives: projectile

College Physics by Openstax Chapter 3 Problem 28


(a) A daredevil is attempting to jump his motorcycle over a line of buses parked end to end by driving up a 32º ramp at a speed of 40.0 m/s (144 km/h) . How many buses can he clear if the top of the takeoff ramp is at the same height as the bus tops and the buses are 20.0 m long? (b) Discuss what your answer implies about the margin of error in this act—that is, consider how much greater the range is than the horizontal distance he must travel to miss the end of the last bus. (Neglect air resistance.)


Solution:

To illustrate the problem, consider the following figure:

The projectile path of the daredevil from the ramp

Part A

To determine the number of buses that the daredevil can clear, we will divide the range of the projectile path by 20 m, the length of 1 bus. That is

\text{no. of bus}=\frac{\text{Range}}{\text{bus length}}

First, we need to solve for the range.

\begin{align*}
\text{Range} & =\frac{\text{v}_{\text{o}}^2\:\sin 2\theta }{\text{g}} \\
\text{Range} & =\frac{\left(40.0\:\text{m/s}\right)^2\sin \left[2\left(32^{\circ} \right)\right]}{9.81\:\text{m/s}^2} \\
\text{Range} & =146.7\:\text{m} \\

\end{align*}

Therefore, the number of buses cleared is

\begin{align*}
\text{no. of buses} & =\frac{146.7\:\text{m}}{20\:\text{m}} \\
\text{no. of buses} & =7.34\:\text{buses} \\
\text{no. of buses} & =7\:\text{buses}

\qquad \qquad{\color{DarkOrange} \left( \text{Answer} \right)} \\
\end{align*}

Therefore, he can only clear 7 buses. 

Part B

He clears the last bus by 6.7 m, which seems to be a large margin of error, but since we neglected air resistance, it really isn’t that much room for error.


Advertisements
Advertisements

College Physics by Openstax Chapter 3 Problem 27


A ball is thrown horizontally from the top of a 60.0-m building and lands 100.0 m from the base of the building. Ignore air resistance. (a) How long is the ball in the air? (b) What must have been the initial horizontal component of the velocity? (c) What is the vertical component of the velocity just before the ball hits the ground? (d) What is the velocity (including both the horizontal and vertical components) of the ball just before it hits the ground?


Solution:

To illustrate the problem, consider the following figure:

The path of the ball thrown at the top of a 60 m building.

Part A

The problem states that the initial velocity is horizontal, this means that the initial vertical velocity is zero. We are also given the height of the building (which is a downward displacement), so we can solve for the time of flight using the formula y=voyt+1/2at2. That is,

\begin{align*}
\text{y} & =\text{v}_{\text{oy}}\text{t}+\frac{1}{2}\text{a}\text{t}^2 \\
 -60\:\text{m}&=0+\frac{1}{2}\left(-9.81\:\text{m/s}^2\right)\text{t}^2 \\
\text{t}^2 & =\dfrac{-60\:\text{m}}{-4.905\:\text{m/s}^2} \\
\text{t}^2 & =12.2324\:\text{s}^2 \\
\text{t} & =3.50\:\text{s} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}

\end{align*}

Part B

To solve for the vox, we will use the formula \text{v}_{\text{ox}}=\frac{\Delta \:\text{x}}{\text{t}}.

\begin{align*}
\text{v}_{\text{ox}} & =\frac{100\:\text{m}}{3.50\:\text{s}} \\
\text{v}_{\text{ox}} & =28.6\:\text{m/s} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}
\end{align*}

Part C

To solve for the velocity as the ball hits the ground, we shall consider two points: (1) at the beginning of the flight, and (2) when the ball hits the ground.

We know that the initial velocity, voy, is zero. To solve for the final velocity, we will use the formula \text{v}_{\text{f}}=\text{v}_{\text{o}}+\text{at}.

\begin{align*}
\text{v}_{\text{f}} & =0+\left(-9.81\:\text{m/s}^2\right)\left(3.50\:\text{s}\right) \\
\text{v}_{\text{f}} & =-34.3\:\text{m/s}

\ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}
\end{align*}

The negative velocity indicates that the motion is downward.

Part D

Since we already know the horizontal and vertical components of the velocity when it hits the ground, we can find the resultant.

\begin{align*}
\text{v} & =\sqrt{\text{v}_{\text{x}}^2+\text{v}_{\text{y}}^2} \\
\text{v} & =\sqrt{\left(28.57\:\text{m/s}\right)^2+\left(-34.34\:\text{m/s}\right)^2} \\
\text{v} & =44.7\:\text{m/s}

\ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}
\end{align*}

The direction of the velocity is

\begin{align*}
\theta_{\text{x}} & =\tan ^{-1}\left|\frac{\text{v}_{\text{y}}}{\text{v}_{\text{x}}}\right| \\
\theta _{\text{x}} & =\tan ^{-1}\left|\frac{-34.34}{28.57}\right| \\
\theta _{\text{x}} & =50.2^{\circ}

\ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}
\end{align*}

The velocity is directed 50.2° down the x-axis.


Advertisements
Advertisements

College Physics by Openstax Chapter 3 Problem 26


A ball is kicked with an initial velocity of 16 m/s in the horizontal direction and 12 m/s in the vertical direction. (a) At what speed does the ball hit the ground? (b) For how long does the ball remain in the air? (c)What maximum height is attained by the ball?


Solution:

To illustrate the problem, consider the following figure:

The path of the projectile with initial horizontal and vertical velocities given.

Part A

Since the starting position has the same elevation as when it hits the ground, the speeds at these points are the same. The final speed is computed by solving the resultant of the horizontal and vertical velocities. That is

\begin{align*}
\text{v}_{\text{f}} & =\sqrt{\left(\text{v}_{\text{ox}}\right)^2+\left(\text{v}_{\text{oy}}\right)^2} \\
\text{v}_{\text{f}} & =\sqrt{\left(16\:\text{m/s}\right)^2+\left(12\:\text{m/s}\right)^2} \\
\text{v}_{\text{f}} & =\sqrt{400\:\text{(m/s)}^2} \\
\text{v}_{\text{f}} & =20\:\text{m/s} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}
\end{align*}

Part B

Consider the two points: (1) the starting point and (2) the highest point.

We know that at the highest point, the vertical velocity is zero. We also know that the total time of the flight is twice the time from the beginning to the top.

So, we shall use the formula \text{t}=\frac{\text{v}_{\text{f}}-\text{v}_{\text{o}}}{\text{a}}.

\begin{align*}
\text{t} & =2\left(\frac{\text{v}_{\text{top}}-\text{v}_{\text{o}}}{\text{a}}\right) \\
\text{t} & =2\left(\frac{0\:\text{m/s}-12\:\text{m/s}}{-9.81\:\text{m/s}^2}\right) \\
\text{t} & =2.45\:\text{s} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}
\end{align*}

Part C

The maximum height attained can be calculated using the formula \left(\text{v}_{\text{f}}\right)^2=\left(\text{v}_{\text{o}}\right)^2+2\text{a}\text{y}.

The maximum height is calculated as follows:

\begin{align*}
\left(\text{v}_{\text{f}}\right)^2 & =\left(\text{v}_{\text{o}}\right)^2+2\text{ay} \\
\text{y}_{\max } & =\frac{\left(\text{v}_{\text{top}}\right)^2-\left(\text{v}_{\text{o}}\right)^2}{2\text{a}} \\
\text{y}_{\max }& =\frac{\left(0\:\text{m/s}\right)^2-\left(12\:\text{m/s}\right)^2}{2\left(-9.81\:\text{m/s}^2\right)} \\
\text{y}_{\max } & =7.34\:\text{m} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}
\end{align*}

Advertisements
Advertisements

College Physics by Openstax Chapter 3 Problem 25


A projectile is launched at ground level with an initial speed of 50.0 m/s at an angle of 30.0º above the horizontal. It strikes a target above the ground 3.00 seconds later. What are the x and y distances from where the projectile was launched to where it lands?


Solution:

Since we do not know the exact location of the projectile after 3 seconds, consider the following arbitrary figure:

The path of the projectile from the ground to a point 3 seconds later.

From the figure, we can solve for the components of the initial velocity.

\begin{align*}
\text{v}_{\text{ox}} &=\left(50\:\text{m/s}\right)\cos 30^{\circ} \\
& =43.3013\:\text{m/s}
\\
\\
\text{v}_{\text{oy}} & =\left(50\:\text{m/s}\right)\sin 30^{\circ} \\
&=25\:\text{m/s}
\\
\end{align*}

So, we are asked to solve for the values of x and y. To solve for the value of the horizontal displacement, x, we shall use the formula x=voxt. That is,

\begin{align*}
\text{x} & =\text{v}_{\text{ox}}\text{t} \\
\text{x} & =\left(43.3013\:\text{m/s}\right)\left(3\:\text{s}\right) \\
\text{x} & =130\:\text{m} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}
\end{align*}

To solve for the vertical displacement, y, we shall use the formula y=voyt+1/2at2. That is

\begin{align*}
\text{y} & =\text{v}_{\text{oy}}\text{t}+\frac{1}{2}\text{a}\text{t}^2 \\
\text{y} & =\left(25\:\text{m/s}\right)\left(3\:\text{s}\right)+\frac{1}{2}\left(-9.81\:\text{m/s}^2\right)\left(3\:\text{s}\right)^2 \\
\text{y} & =30.9\:\text{m} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}
\end{align*}

Therefore, the projectile strikes a target at a distance 129.9 meters horizontally and 30.9 meters vertically from the launching point.


Advertisements
Advertisements