Determine the magnitude and direction θ of F so that the particle is in equilibrium.
Solution:
Free-body Diagram:
Equilibrium Equation:
Summation of forces in the x-direction:
\begin{aligned} \xrightarrow{+} \: \sum F_x & = 0 & \\ 5 \: \text{kN}+F \sin \theta - 8 \: \text {kN} \cos 30 \degree - 4\: \text{kN} \cos 60 \degree & = 0 & \\ F \sin \theta &= 3.9282 & (1) \end{aligned}
Summation of forces in the y-direction:
\begin{aligned} +\uparrow \sum F_y & = 0 &\\ 8 \sin 30 \degree - 4 \sin 60 \degree - F \cos \theta & =0 &\\ F \cos \theta & = 0.5359 & (2)\\ \end{aligned}
We now have two equations. Divide Eq (1) by (2)
\begin{aligned} \dfrac{F \sin \theta}{F \cos \theta} &= \dfrac{3.9282}{0.5359} \\ \dfrac{ \sin \theta}{ \cos \theta} & = 7.3301 \\ \end{aligned}
We know that \tan \theta = \dfrac{\sin \theta}{\cos \theta} :
\begin{aligned} \tan \theta &=7.3301 \\ \theta & = \tan^{-1}7.3301\\ \textcolor{blue}\theta & \textcolor{blue}{=82.2\degree}\\ \end{aligned}
Substituting this result to equation (1), we have
\begin{aligned} F\sin 82.2 \degree & = 3.9282 \\ \textcolor{blue}F & \textcolor{blue}{=3.96 \ \text{kN}} \end{aligned}
You must be logged in to post a comment.