Tag Archives: resultant

College Physics by Openstax Chapter 3 Problem 6


Repeat the problem above, but reverse the order of the two legs of the walk; show that you get the same final result. That is, you first walk leg B , which is 20.0 m in a direction exactly 40º south of west, and then leg A , which is 12.0 m in a direction exactly 20º west of north. (This problem shows that A+B=B+A.)


Solution:

Consider Figure 3-6A below with B drawn first before A.

Figure 3-6A

Compute for the value of angle β by adding 20° and the complement of 40°. This is by simple geometry.

\begin{align*}
\beta & = 20^\circ +\left( 90^\circ -40^\circ \right) \\
\beta & = 70^\circ \\
\end{align*}

Solve for the magnitude of R using cosine law.

\begin{align*}
R^2 & = A^2 +B^2 - 2 A B \cos \beta \\
R & = \sqrt{A^2 +B^2 - 2 A B \cos \beta} \\
R & = \sqrt{\left( 12.0 \ \text{m} \right)^2+\left( 20.0 \ \text{m} \right)^2-2\left( 12.0 \ \text{m} \right)\left( 20.0 \ \text{m} \right) \cos 70^\circ} \\
R & = 19.4892 \ \text{m}\\
R & = 19.5 \ \text{m} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}
\end{align*}

To solve for θ, we need to solve angle α first. This can be done using the sine law.

\begin{align*}
\frac{\sin \alpha}{A}  & = \frac{\sin \beta }{R} \\
\frac{\sin \alpha}{12.0 \ \text{m}}  & = \frac{\sin 70^\circ }{19.4892 \ \text{m}} \\
\sin \alpha & = \frac{12.0 \ \text{m}\ \sin 70^\circ}{19.4892 \ \text{m}} \\
\alpha & = \sin ^{-1}  \left(  \frac{12.0 \ \text{m}\ \sin 70^\circ}{19.4892 \ \text{m}} \right) \\
\alpha & = 35.3516 ^ \circ
\end{align*}

Finally, we can solve for θ.

\begin{align*}
\theta &  = 40^\circ - 35.3516^\circ  \\
& = 4.6484 ^\circ \\
& = 4.65 ^\circ
\end{align*}

Therefore, the compass reading is

4.65^\circ, \text{South of West} \ \qquad \ {\color{Orange} \left( \text{Answer} \right)}

This is the same with Problem 5.


Advertisements
Advertisements

College Physics by Openstax Chapter 3 Problem 5


Suppose you first walk 12.0 m in a direction 20º west of north and then 20.0 m in a direction 40.0º south of west. How far are you from your starting point, and what is the compass direction of a line connecting your starting point to your final position? (If you represent the two legs of the walk as vector displacements A and B, as in Figure 3.54, then this problem finds their sum R=A+B.)

Figure 3.54

Solution:

Consider Figure 3.5A shown below.

Figure 3.5A

Before we can use cosine law to solve for the magnitude of R, we need to solve for the interior angle 𝛽 first. The value of 𝛽 can be calculated by inspecting the figure and use simple knowledge on geometry. It is equal to the sum of 20° and the complement of 40°. That is

\beta = 20^\circ +\left( 90^\circ -40^\circ  \right) = 70^\circ 

We can use cosine law to solve for R.

\begin{align*}
R^2 & =A^2+B^2 -2AB \cos \beta \\
R^2 & = \left( 12.0\ \text{m} \right) ^2+\left( 20.0\ \text{m} \right)^2-2 \left( 12.0\ \text{m} \right) \left( 20.0\ \text{m} \right)
 \cos 70^\circ \\
R & = \sqrt{ \left( 12.0\ \text{m} \right) ^2+\left( 20.0\ \text{m} \right)^2-2 \left( 12.0\ \text{m} \right) \left( 20.0\ \text{m} \right)
 \cos 70^\circ} \\
R  & =19.4892 \ \text{m} \\
R & =19.5 \ \text{m} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}
\end{align*}

We can solve for α using sine law.

\begin{align*}
\frac{\sin \alpha}{B} & = \frac{\sin \beta}{R} \\
\frac{\sin \alpha}{20.0\ \text{m}} & = \frac{\sin 70^\circ }{19.4892 \ \text{m}} \\
\sin \alpha & = \frac{20.0 \ \sin 70^\circ }{19.4892} \\
\alpha & = \sin ^{-1}  \left(  \frac{20.0 \ \sin 70^\circ }{19.4892}  \right) \\
\alpha & = 74.6488 ^\circ 
\end{align*}

Then we solve for the value of θ by subtracting 70° from α.

\theta=74.6488 ^\circ -70 ^\circ = 4.65^\circ

Therefore, the compass reading is

4.65^\circ, \text{South of West} \ \qquad \ {\color{Orange} \left( \text{Answer} \right)}

Advertisements
Advertisements

College Physics by Openstax Chapter 3 Problem 3


Find the north and east components of the displacement for the hikers shown in Figure 3.50.

Figure 3.50

Solution:

Refer to Figure 3-3-A for the north and east components of the displacement s of the hikers.

Figure 3-3-A

Considering the right triangle formed. The north component is computed as

\begin{align*}
\text{s}_{\text{north}} & = \left( 5.00 \ \text{km}  \right)\sin 40^\circ  \\
\text{s}_{\text{north}} & = 3.21 \ \text{km} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}\\
\end{align*}

Using the same right triangle, the east component is computed as follows.

\begin{align*}
\text{s}_{\text{east}} & = \left( 5.00 \ \text{km}  \right)\cos 40^\circ  \\
\text{s}_{\text{east}} & = 3.83 \ \text{km} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}\\
\end{align*}

Advertisements
Advertisements

Hibbeler Statics 14E P2.2 — Solving for an Unknown Force Given the Magnitude and Direction of a Resultant and Another Force


If the magnitude of the resultant force is to be 500 N, directed along the positive y-axis, determine the magnitude of force F and its direction \theta .

Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 2-2


Solution:

The parallelogram law and the triangulation rule are shown in the figures below.

Engineering Mechanics by RC Hibbeler Problem 2.2 Parallelogram Law
Parallelogram Law
Engineering Mechanics by RC Hibbeler Problem 2.2 Triangulation Rule
Triangulation Rule

Considering the figure of the triangulation rule, we can solve for the magnitude of \textbf{F} using the cosine law.

\begin{align*}
\textbf{F} & = \sqrt{700^2+500^2-2\left( 700 \right)\left( 500 \right)\cos105^{\circ}}\\
& = 959.78 \  \text{N}\\
& = 960 \  \text{N}\\
\end{align*}

Then we use the sine law to solve for the angle \theta.

\begin{align*}
\frac{\sin \left(90^{\circ}-\theta \right)}{700} & = \frac{\sin 105^{\circ}}{959.78}\\
\sin \left(90^{\circ}-\theta \right) & =\frac{700 \sin 105^{\circ }}{959.78}\\
90^{\circ}-\theta & = \sin^{-1} \left( \frac{700 \sin 105^{\circ }}{959.78} \right)\\
\theta & = 90^\circ-\sin^{-1} \left( \frac{700 \sin 105^{\circ }}{959.78} \right) \\
\theta & =  90^\circ-44.79^\circ\\
\theta & =  45.2^\circ\\
\end{align*}

Advertisements
Advertisements

Hibbeler Statics 14E P2.1 — Solving for the Magnitude and Direction of the Resultant of Two Coplanar-Concurrent Forces


If \theta = 60 \degree and \textbf{F} = 450 \ \text{N}, determine the magnitude of the resultant force and its direction, measured counterclockwise from the positive x axis.

Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 2-1


Solution:

The parallelogram law and the triangulation rule are shown in the figures below.

(a) Parallelogram Law
(b) Triangulation Rule

Considering figure (b), we can solve for the magnitude of \textbf{F}_R using the cosine law.

\begin{align*}
\textbf{F}_R & = \sqrt{700^2+450^2-2\left( 700 \right)\left( 450 \right)\cos45^{\circ}}\\
& = 497.01 \ \text{N}\\
& = 497 \ \text{N}
\end{align*}

Then we use the sine law to solve for the interior angle \theta.

\begin{align*}
\frac{\sin \theta}{700} & = \frac{\sin 45^{\circ}}{497.01}\\
\sin \theta & =\frac{700\ \sin 45^{\circ }}{497.01}\\
\theta & = \sin^{-1} \left( \frac{700\ \sin 45^{\circ }}{497.01} \right)\\
& \text{This is an ambiguous case }\\
\theta & = 84.81^\circ \  or \  \theta =95.19^\circ \\
\end{align*}

In here, the correct angle measurement is \theta = 95.19^{\circ}.

Thus, the direction angle \phi of \textbf{F}_R measured counterclockwise from the positive x-axis, is

\begin{align*}
\phi & = \theta +60^\circ \\
& = 95.19^\circ +60^\circ \\
& = 155^\circ 
\end{align*}

Advertisements
Advertisements

Hibbeler Statics 14E P2.2 — Resultant of a System of Two Forces


Determine the magnitude of the resultant force \textbf{F}_{\text{R}} = \textbf{F}_1 + \textbf{F}_2 and its direction, measured counterclockwise from the positive x axis. 

Engineering Mechanics: Statics figure for Problem 2-3

Engineering Mechanics: Statics 13th Edition by RC Hibbeler, Problem 2-1
Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 2-3


SOLUTION:

The parallelogram law of the force system is shown.

Consider the triangle AOB.

Using cosine law to solve for the resultant force \textbf{F}_{\text{R}}

\begin{align*}
\textbf{F}_\text{R} & =\sqrt{\left(250\right)^2+\left(375\right)^2-2\left(250\right)\left(375\right) \cos\:75^{\circ} }\\
& =393.2 \ \text{lb}\\
& =393\:\text{lb}\\
\end{align*}

The value of angle θ can be solved using sine law. 

\begin{align*}
\frac{393.2}{\sin\:\left(75^{\circ} \right)} & = \frac{250}{\sin\:\theta } \\
\sin \theta & = \frac{250 \ \sin75 \degree}{393.2}\\
\theta & =\sin^{-1} \left(\frac{250 \ \sin75 \degree}{393.2}\right)\\
\theta & = 37.89^{\circ}\\
\end{align*}

Solve for the unknown angle \phi .

\phi =360^{\circ} -45^{\circ} +37.89^{\circ} =353^{\circ} 

The resultant force has a magnitude of 393 lb and is located 353º measured counterclockwise from the positive x-axis.


Advertisements
Advertisements