What percentage of the acceleration at Earth’s surface is the acceleration due to gravity at the position of a satellite located 300 km above Earth?
Solution:
The acceleration due to gravity of a body and the Earth is given by the formula
g= G \frac{M}{r^2}
where G is the gravitational constant, M is the mass of the Earth, and r is the distance of the object to the center of the Earth. We know that the approximate radius of the Earth is r=6.3781 \times 10^6 \ \text{m} .
The percentage of the acceleration at 300 km above the Earth of the acceleration due to gravity at Earth’s surface is
\displaystyle \frac{\left( \frac{GM}{r^2} \right)_2}{\left( \frac{GM}{r^2} \right)_1} \times 100\%
Note that the subscript 2 indicates the satellite located 300 km above the Earth, and the subscript 1 indicates the object at the Earth’s surface. Also, from the expression above, we can cancel G and M from the numerator and denominator because these are constants. So, we are down to
\frac{\left( \frac{1}{r^2} \right)_2}{\left( \frac{1}{r^2} \right)_1} \times 100\% = \frac{\left( r^2 \right)_1}{\left( r^2 \right)_2} \times 100\%
Substituting the values, we have
\begin{align*} \frac{\left( r^2 \right)_1}{\left( r^2 \right)_2} \times 100\% & = \frac{\left( 6.3781 \times 10^6 \ \text{m} \right)^{2}}{\left( 6.3781 \times 10^6 \ \text{m}+300 \times 10^{3} \ \text{m} \right)^{2}} \times 100\% \\ \\ & = 91.2172\% \\ \\ & = 91.2\% \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}
The percentage of the acceleration at the Earth’s surface of the acceleration due to gravity at the position of a satellite located 300 km above the Earth is about 91.2%.
You must be logged in to post a comment.