Tag Archives: simple stress

Strength of Materials Problem 101 – Stress in each section of a composite bar


A composite bar consists of an aluminum section rigidly fastened between a bronze section and a steel section as shown in Fig. 1-8a. Axial loads are applied at the positions indicated. Determine the stress in each section.

Strength of Materials by Andrew Pytel and Ferdinand Singer Problem 101
Figure 1.8a

Solution:

We must first determine the axial load in each section to calculate the stresses. The free-body diagrams have been drawn by isolating the portion of the bar lying to the left of imaginary cutting planes. Identical results would be obtained if portions lying to the right of the cutting planes had been considered.

Solve for the internal axial load of the bronze

Free body diagram for the internal axial load of the bronze section for Problem 101 of Strength of Materials by Ferdinand Singer and Andrew Pytel
The free-body diagram of the bronze section
\begin{align*}
\sum_{}^{}F_x & = 0  \to  \\
-4000\ \text{lb}+P_{br} & = 0 \\
P_{br} & = 4000 \ \text{lb} \ \text{(tension)}
\end{align*}

Solve for the internal axial load of the aluminum

Free-body diagram of the aluminum section for problem 101 of Strength of materials by Andrew Pytel and Ferdinand Singer
The free-body diagram of the aluminum section
\begin{align*}
\sum_{}^{}F_x & = 0 \\
-4000 \ \text{lb} + 9000 \ \text{lb} - P_{al} & = 0 \\
P_{al} & = 5000 \ \text{lb} \ \text{(Compression)}
\end{align*}

Solve for the internal axial load of the aluminum

The free-body diagram of the steel section
\begin{align*}
\sum_{}^{}F_x & = 0 \\
-4000\ \text{lb} + 9000 \ \text{lb} + 2000\ \text{lb} - P_{st} & =0 \\
P_{st} & = 7000 \ \text{lb} \ \text{(Compression)}
\end{align*}

We can now solve the stresses in each section.

For the bronze

\begin{align*}
\sigma_{br} & = \frac{P_{br}}{A_{br}} \\
& = \frac{4000\ \text{lb}}{1.2 \ \text{in}^2} \\
& = 3330 \ \text{psi}\ \text{(Tension)} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

For the aluminum

\begin{align*}
\sigma_{al} & = \frac{P_{br}}{A_{al}} \\
& = \frac{5000\ \text{lb}}{1.8 \ \text{in}^2} \\
& = 2780 \ \text{psi}\ \text{(Compression)} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

For the steel

\begin{align*}
\sigma_{st} & = \frac{P_{st}}{A_{st}} \\
& = \frac{7000\ \text{lb}}{1.6 \ \text{in}^2} \\
& = 4380\ \text{psi}\ \text{(Compression)} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements
Simple Stress Featured Image: Strength of Materials 4th Edition by Andrew Pytel and Ferdinand Singer

Chapter 1: Simple Stress


Problem 101

Problem 102

Problem 103

Problem 104

Problem 105

Problem 106

Problem 107

Problem 108

Problem 109

Problem 110

Problem 111

Problem 112

Problem 113

Problem 114

Problem 115

Problem 116

Problem 117

Problem 118

Problem 119

Problem 120

Problem 121

Problem 122

Problem 123

Problem 124

Problem 125

Problem 126

Problem 127

Problem 128

Problem 129

Problem 130

Problem 131

Problem 132

Problem 133

Problem 134

Problem 135

Problem 136

Problem 137

Problem 138

Problem 139

Problem 140

Problem 141

Problem 142


Advertisements
Advertisements