A powerful motorcycle can accelerate from rest to 26.8 m/s (100 km/h) in only 3.90 s.
(a) What is its average acceleration?
(b) How far does it travel in that time?
Solution:
We are given the following: v_0=0 \ \text{m/s}; v_f=26.8 \ \text{m/s}; and t=3.90\ \text{s}.
Part A
The average acceleration of the motorcycle can be solved using the equation \overline{a}=\frac{\Delta v}{\Delta t}. Substitute the given into the equation. That is,
\begin{align*} \overline{a} & =\frac{\Delta v}{\Delta t} \\ \overline{a} & =\frac{26.8\:\text{m/s}-0\:\text{m/s}}{3.90\:\text{s}} \\ \overline{a} & =6.872\:\text{m/s}^2\ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}
Part B
The distance traveled is equal to the average velocity multiplied by the time of travel. That is,
\begin{align*} \Delta x & =v_{ave}t\\ \Delta x & =\left(\frac{0\:\text{m/s}+26.8\:\text{m/s}}{2}\right)\left(3.90\:\text{s}\right) \\ \Delta x & =52.26\:\text{m}\ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \\ \end{align*}
You must be logged in to post a comment.