Tag Archives: Solution Manual for College Physics by Openstax

Problem 6-15: The centripetal acceleration at the tip of a helicopter blade


Helicopter blades withstand tremendous stresses. In addition to supporting the weight of a helicopter, they are spun at rapid rates and experience large centripetal accelerations, especially at the tip.

(a) Calculate the magnitude of the centripetal acceleration at the tip of a 4.00 m long helicopter blade that rotates at 300 rev/min.

(b) Compare the linear speed of the tip with the speed of sound (taken to be 340 m/s).


Solution:

Part A

We are given the following values: r=4.00 mr=4.00\ \text{m}, and ω=300 rev/min\omega = 300 \ \text{rev/min}.

Let us convert the angular velocity to unit of radians per second.

ω=300 revmin×2π rad1 rev×1 min60 sec=31.4159 rad/sec\omega = 300 \ \frac{\text{rev}}{\text{min}} \times \frac{2\pi \ \text{rad}}{1 \ \text{rev}}\times \frac{1\ \text{min}}{60 \ \text{sec}} = 31.4159 \ \text{rad/sec}

The centripetal acceleration at the tip of the helicopter blade can be computed using the formula

ac=rω2a_{c} = r \omega ^2

If we substitute the given values into the formula, we have

ac=rω2ac=(4.00 m)(31.4159 rad/sec)2ac=3947.8351 m/s2ac=3.95×103 m/s2  (Answer)\begin{align*} a_{c} & = r \omega^2 \\ \\ a_{c} & = \left( 4.00\ \text{m} \right)\left( 31.4159 \ \text{rad/sec} \right)^2 \\ \\ a_{c} & = 3947.8351 \ \text{m/s}^2 \\ \\ a_{c} & = 3.95 \times10^3 \ \text{m/s}^2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Part B

We are asked to solve for the linear velocity of the blade’s tip. We are going to use the formula

v=rωv=r \omega

We just needed to substitute the given values into the formula.

v=rωv=(4.00 m)(31.4159 rad/sec)v=125.6636 m/sv=126 m/s  (Answer)\begin{align*} v & = r \omega \\ \\ v & = \left( 4.00 \ \text{m} \right)\left( 31.4159 \ \text{rad/sec} \right) \\ \\ v & = 125.6636 \ \text{m/s} \\ \\ v & = 126 \ \text{m/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Let us compare this with the speed of light which is 340 m/s.

125.6636 m/s340 m/s×100%=36.9599%=37.0%\frac{125.6636 \ \text{m/s}}{340\ \text{m/s}} \times 100 \%= 36.9599 \% =37.0\%

The linear velocity of the blades tip is 37.0% of the speed of light.


Advertisements
Advertisements

Problem 6-14: The centripetal acceleration and a linear speed of a point on an edge of an ordinary workshop grindstone


An ordinary workshop grindstone has a radius of 7.50 cm and rotates at 6500 rev/min.

(a) Calculate the magnitude of the centripetal acceleration at its edge in meters per second squared and convert it to multiples of g.

(b) What is the linear speed of a point on its edge?


Solution:

We are given the following values: r=7.50 cmr=7.50\ \text{cm}, and ω=6500 rev/min\omega = 6500\ \text{rev/min} . We need to convert these values into appropriate units so that we can come up with sensical units when we solve for the centripetal acceleration.

r=7.50 cm=0.075 mr = 7.50 \ \text{cm} = 0.075 \ \text{m}
ω=6500 rev/min×2π rad1 rev×1 min60 sec=680.6784 rad/sec\omega = 6500 \ \text{rev/min} \times\frac{2\pi \ \text{rad}}{1\ \text{rev}} \times \frac{1 \ \text{min}}{60\ \text{sec}} = 680.6784 \ \text{rad/sec}

Part A

We are asked to solve for the centripetal acceleration aca_{c}. Basing on the given data, we are going to use the formula

ac=rω2a_{c} = r \omega ^{2}

Substituting the given values, we have

ac=rω2ac=(0.075 m)(680.6784 rad/sec)2ac=34749.2313 m/s2ac=3.47×104 m/s2  (Answer)\begin{align*} a_{c} & = r \omega ^2 \\ \\ a_{c} & = \left( 0.075 \ \text{m} \right) \left( 680.6784 \ \text{rad/sec} \right)^2 \\ \\ a_{c} & = 34749.2313 \ \text{m/s}^2 \\ \\ a_{c} & = 3.47 \times 10^{4} \ \text{m/s} ^2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Now, we can convert the centripetal acceleration in multiples of g.

ac=34749.2313 m/s2×g9.81 m/s2ac=3542.2254gac=3.54×103g  (Answer)\begin{align*} a_{c} & = 34749.2313 \ \text{m/s}^2 \times \frac{g}{9.81 \ \text{m/s}^2}\\ \\ a_{c} & =3542.2254g \\ \\ a_{c} & = 3.54\times 10^3 g \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Part B

We are then asked for the linear speed, vv of the point on the edge. So, we can use the given values to find the linear speed. We are going to use the formula

v=rωv=r\omega

If we substitute the given values, we have

v=rωv=(0.075 m)(680.6784 rad/sec)  v=51.0509 m/sv=51.1 m/s  (Answer)\begin{align*} v & = r \omega \\ \\ v & = \left( 0.075 \ \text{m} \right)\left( 680.6784\ \text{rad/sec} \right) \ \ \\ \\ v & = 51.0509 \ \text{m/s} \\ \\ v & = 51.1 \ \text{m/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Problem 6-13: The motion of the WWII fighter plane propeller


The propeller of a World War II fighter plane is 2.30 m in diameter.

(a) What is its angular velocity in radians per second if it spins at 1200 rev/min?

(b) What is the linear speed of its tip at this angular velocity if the plane is stationary on the tarmac?

(c) What is the centripetal acceleration of the propeller tip under these conditions? Calculate it in meters per second squared and convert to multiples of g.


Solution:

Part A

We are converting the angular velocity ω=1200 rev/min\omega = 1200\ \text{rev/min} into radians per second.

ω=1200 revmin×2π radian1 rev×1 min60 secω=125.6637 radians/secω=126 radians/sec  (Answer)\begin{align*} \omega = & \frac{1200\ \text{rev}}{\text{min}}\times \frac{2\pi \ \text{radian}}{1\ \text{rev}} \times \frac{1 \ \text{min}}{60 \ \text{sec}} \\ \\ \omega = & 125.6637 \ \text{radians/sec} \\ \\ \omega = & 126 \ \text{radians/sec} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Part B

We are now solving the linear speed of the tip of the propeller by relating the angular velocity to linear velocity using the formula v=rωv = r \omega . The radius is half the diameter, so r=2.30 m2=1.15 mr= \frac{2.30\ \text{m}}{2} = 1.15 \ \text{m} .

v=rωv=(1.15 m)(125.6637 radians/sec)v=144.5132 m/sv=145 m/s  (Answer)\begin{align*} v & = r \omega \\ \\ v & = \left( 1.15 \ \text{m} \right)\left( 125.6637 \ \text{radians/sec} \right) \\ \\ v & = 144.5132 \ \text{m/s} \\ \\ v & = 145 \ \text{m/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Part C

From the computed linear speed and the given radius of the propeller, we can now compute for the centripetal acceleration ac a_{c} using the formula

ac=v2ra_{c} = \frac{v^2}{r}

If we substitute the given values, we have

ac=v2rac=(144.5132 m/s)21.15 mac=18160.0565 m/s2ac=1.82×104 m/s2  (Answer)\begin{align*} a_{c} & = \frac{v^2}{r} \\ \\ a_{c} & = \frac{\left( 144.5132 \ \text{m/s} \right)^2}{1.15 \ \text{m}} \\ \\ a_{c} & = 18160.0565 \ \text{m/s}^2 \\ \\ a_{c} & = 1.82\times 10^{4} \ \text{m/s}^2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

We can convert this value in multiples of gg

ac=18160.0565 m/s2×g9.81 m/s2ac=1851.1780gac=1.85×103 g  (Answer)\begin{align*} a_{c} & = 18160.0565 \ \text{m/s}^2 \times \frac{g}{9.81 \ \text{m/s}^2} \\ \\ a_{c} & = 1851.1780 g \\ \\ a_{c} & = 1.85\times 10^{3} \ g \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Problem 6-12: The approximate total distance traveled by planet Earth since its birth


Taking the age of Earth to be about 4×109 years and assuming its orbital radius of 1.5 ×1011 m has not changed and is circular, calculate the approximate total distance Earth has traveled since its birth (in a frame of reference stationary with respect to the Sun).


Solution:

First, we need to compute for the linear velocity of the Earth using the formula below knowing that the Earth has 1 full revolution in 1 year

v=rωv=r\omega

where r=1.5×1011 mr=1.5\times 10^{11} \ \text{m} and ω=2π rad/year\omega = 2\pi \ \text{rad/year} . Substituting these values, we have

v=rωv=(1.5×1011 m)(2π rad/year)v=9.4248×1011 m/year\begin{align*} v & = r \omega \\ \\ v & = \left( 1.5\times 10^{11} \ \text{m} \right)\left( 2 \pi \ \text{rad/year} \right) \\ \\ v & = 9.4248\times 10^{11} \ \text{m/year} \end{align*}

Knowing the linear velocity, we can compute for the total distance using the formula

Δx=vΔt\Delta x = v \Delta t

We can now substitute the given values: v=9.4248×1011 m/yearv = 9.4248\times 10^{11} \ \text{m/year} and Δt=4×109 years\Delta t = 4\times 10^{9} \ \text{years} .

Δx=vΔtΔx=(9.4248×1011 m/year)(4×109 years)Δx=3.7699×1021 mΔx=4×1021 m  (Answer)\begin{align*} \Delta x & = v \Delta t \\ \\ \Delta x & = \left( 9.4248\times 10^{11} \ \text{m/year} \right) \left( 4\times 10^{9} \ \text{years} \right) \\ \\ \Delta x & = 3.7699 \times 10^{21} \ \text{m} \\ \\ \Delta x & = 4 \times 10^{21} \ \text{m} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Problem 6-11: Calculating the centripetal acceleration of a runner in a circular track


A runner taking part in the 200 m dash must run around the end of a track that has a circular arc with a radius of curvature of 30 m. If the runner completes the 200 m dash in 23.2 s and runs at constant speed throughout the race, what is the magnitude of their centripetal acceleration as they run the curved portion of the track?


Solution:

Centripetal acceleration aca_{c} is the acceleration experienced while in uniform circular motion. It always points toward the center of rotation. It is perpendicular to the linear velocity vv and has the magnitude

ac=v2ra_{c}=\frac{v^{2}}{r}

We can solve for the constant speed of the runner using the formula

v=ΔxΔtv=\frac{\Delta x}{\Delta t}

We are given the distance Δx=200 m\Delta x = 200 \ \text{m} , and the total time Δt=23.2 s\Delta t = 23.2\ \text{s} . Therefore, the velocity is

v=ΔxΔtv=200 m23.2 sv=8.6207 m/s\begin{align*} v & =\frac{\Delta x}{\Delta t} \\ \\ v & = \frac{200\ \text{m}}{23.2\ \text{s}} \\ \\ v & = 8.6207\ \text{m/s} \end{align*}

From the given problem, we are given the following values: r=30 mr=30\ \text{m} . We now have the details to solve for the centripetal acceleration.

ac=v2rac=(8.6207 m/s)230 mac=2.4772 m/s2ac=2.5 m/s2  (Answer)\begin{align*} a_{c} & = \frac{v^{2}}{r} \\ \\ a_{c} & = \frac{\left( 8.6207\ \text{m/s} \right)^2}{30\ \text{m}} \\ \\ a_{c} & = 2.4772\ \text{m/s}^{2} \\ \\ a_{c} & = 2.5\ \text{m/s}^{2} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Problem 6-10: The angular velocity of a person in a circular fairground ride


A fairground ride spins its occupants inside a flying saucer-shaped container. If the horizontal circular path the riders follow has an 8.00 m radius, at how many revolutions per minute will the riders be subjected to a centripetal acceleration whose magnitude is 1.50 times that due to gravity?


Solution:

Centripetal acceleration aca_{c} is the acceleration experienced while in uniform circular motion. It always points toward the center of rotation. The relationship between the centripetal acceleration aca_{c} and the angular velocity ω\omega is given by the formula

ac=rω2a_{c}=r\omega^{2}

Now, taking the formula and solving for the angular velocity:

ω=acr\omega = \sqrt{\frac{a_{c}}{r}}

From the given problem, we are given the following values: r=8.00 mr=8.00\ \text{m} and ac=1.50×9.81 m/s2=14.715 m/s2a_{c}=1.50\times 9.81 \ \text{m/s}^2=14.715\ \text{m/s}^2. If we substitute these values in the formula, we can solve for the angular velocity.

ω=acrω=14.715 m/s28.00 mω=1.3561 rad/sec\begin{align*} \omega & = \sqrt{\frac{a_{c}}{r}} \\ \\ \omega & = \sqrt{\frac{14.715\ \text{m/s}^2}{8.00\ \text{m}}} \\ \\ \omega & = 1.3561\ \text{rad/sec} \\ \\ \end{align*}

Then, we can convert this value into its corresponding value at the unit of revolutions per minute.

ω=1.3561 radsec×60 sec1 min×1 rev2π radω=12.9498 rev/minω=13.0 rev/min  (Answer)\begin{align*} \omega & = 1.3561\ \frac{\text{rad}}{\text{sec}} \times \frac{60\ \text{sec}}{1\ \text{min}}\times \frac{1\ \text{rev}}{2\pi \ \text{rad}} \\ \\ \omega & = 12.9498\ \text{rev/min} \\ \\ \omega & = 13.0 \ \text{rev/min} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Problem 6-9: A construct your own problem on College Physics involving angular motion


Construct Your Own Problem

Consider an amusement park ride in which participants are rotated about a vertical axis in a cylinder with vertical walls. Once the angular velocity reaches its full value, the floor drops away and friction between the walls and the riders prevents them from sliding down. Construct a problem in which you calculate the necessary angular velocity that assures the riders will not slide down the wall. Include a free body diagram of a single rider. Among the variables to consider are the radius of the cylinder and the coefficients of friction between the riders’ clothing and the wall.


Problem 6-8: An integrated problem involving circular motion, momentum, and projectile motion


Integrated Concepts

When kicking a football, the kicker rotates his leg about the hip joint.

(a) If the velocity of the tip of the kicker’s shoe is 35.0 m/s and the hip joint is 1.05 m from the tip of the shoe, what is the shoe tip’s angular velocity?

(b) The shoe is in contact with the initially stationary 0.500 kg football for 20.0 ms. What average force is exerted on the football to give it a velocity of 20.0 m/s?

(c) Find the maximum range of the football, neglecting air resistance.


Solution:

Part A

From the given problem, we are given the following values: v=35.0 m/sv=35.0\ \text{m/s} and r=1.05 mr=1.05\ \text{m}. We are required to solve for the angular velocity ω\omega.

The linear velocity, v v and the angular velocity, ω \omega are related by the equation

v=rω or ω=vrv=r\omega \ \text{or} \ \omega=\frac{v}{r}

If we substitute the given values into the formula, we can directly solve for the value of the angular velocity. That is,

ω=vrω=35.0 m/s1.05 mω=33.3333 rad/secω=33.3 rad/s  (Answer)\begin{align*} \omega & = \frac{v}{r} \\ \\ \omega & = \frac{35.0\ \text{m/s}}{1.05\ \text{m}} \\ \\ \omega & = 33.3333\ \text{rad/sec} \\ \\ \omega & = 33.3 \ \text{rad/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Part B

For this part of the problem, we are going to use Newton’s second law of motion in term of linear momentum which states that the net external force equals the change in momentum of a system divided by the time over which it changes. That is

Fnet=ΔpΔt=m(vfvi)tF_{net} = \frac{\Delta p}{\Delta t} = \frac{m\left( v_f - v_i \right)}{t}

For this problem, we are given the following values: m=0.500 kgm=0.500\ \text{kg}, t=20.0×103 st=20.0\times 10^{-3} \ \text{s}, vf=20.0 m/sv_{f}=20.0\ \text{m/s}, and vi=0v_{i}=0. Substituting all these values into the equation, we can solve directly for the value of the net external force.

Fnet=(0.500 kg)(20.0 m/s0 m/s)20.0×103 sFnet=500 N  (Answer)\begin{align*} F_{net} & = \frac{\left( 0.500\ \text{kg} \right)\left( 20.0\ \text{m/s}-0\ \text{m/s} \right)}{20.0\times 10^{-3}\ \text{s}} \\ \\ F_{net} & = 500\ \text{N} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Part C

This is a problem on projectile motion. In this particular case, we are solving for the range of the projectile. The formula for the range of a projectile is

R=v02sin2θgR=\frac{v_{0}^2 \sin 2\theta}{g}

We are asked to solve for the maximum range, and we know that the maximum range happens when the angle θ\theta is 4545^\circ .

R=(20.0 m/s)2sin(2(45))9.81 m/s2R=40.7747 mR=40.8 m  (Answer)\begin{align*} R & = \frac{\left( 20.0\ \text{m/s} \right)^{2} \sin \left( 2\left( 45^\circ \right) \right)}{9.81 \ \text{m/s}^2} \\ \\ R & = 40.7747\ \text{m} \\ \\ R & = 40.8 \ \text{m} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Problem 6-7: Calculating the angular velocity of a truck’s rotating tires


A truck with 0.420-m-radius tires travels at 32.0 m/s. What is the angular velocity of the rotating tires in radians per second? What is this in rev/min?


Solution:

The linear velocity, vv and the angular velocity ω\omega are related by the equation

v=rω or ω=vrv=r\omega \ \text{or} \ \omega=\frac{v}{r}

From the given problem, we are given the following values: r=0.420 mr=0.420 \ \text{m} and v=32.0 m/sv=32.0 \ \text{m/s}. Substituting these values into the formula, we can directly solve for the angular velocity.

ω=vrω=32.0 m/s0.420 mω=76.1905 rad/sω=76.2 rad/s  (Answer)\begin{align*} \omega & = \frac{v}{r} \\ \\ \omega & = \frac{32.0 \ \text{m/s}}{0.420 \ \text{m}} \\ \\ \omega & = 76.1905 \ \text{rad/s} \\ \\ \omega & = 76.2 \ \text{rad/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Then, we can convert this into units of revolutions per minute:

ω=76.1905 radsec×1 rev2π rad×60 sec1 minω=727.5657 rev/minω=728 rev/min  (Answer)\begin{align*} \omega & = 76.1905 \ \frac{\bcancel{\text{rad}}}{\bcancel{\text{sec}}}\times \frac{1 \ \text{rev}}{2\pi\ \bcancel{\text{rad}}}\times \frac{60\ \bcancel{\text{sec}}}{1\ \text{min}} \\ \\ \omega & = 727.5657\ \text{rev/min} \\ \\ \omega & = 728\ \text{rev/min} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Problem 6-6: Calculating the linear velocity of the lacrosse ball with the given angular velocity


In lacrosse, a ball is thrown from a net on the end of a stick by rotating the stick and forearm about the elbow. If the angular velocity of the ball about the elbow joint is 30.0 rad/s and the ball is 1.30 m from the elbow joint, what is the velocity of the ball?


Solution:

The linear velocity, vv and the angular velocity, ω\omega of a rotating object are related by the equation

v=rωv=r\omega

From the given problem, we have the following values: ω=30.0 rad/s\omega=30.0 \ \text{rad/s} and r=1.30 mr=1.30 \ \text{m} . Substituting these values in the formula, we can directly solve for the linear velocity.

v=rωv=(1.30 m)(30.0 rad/s)v=39.0 m/s  (Answer)\begin{align*} v & =r\omega \\ \\ v & = \left( 1.30 \ \text{m} \right)\left( 30.0 \ \text{rad/s} \right) \\ \\ v & = 39.0 \ \text{m/s}\ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements