Suppose you walk 18.0 m straight west and then 25.0 m straight north. How far are you from your starting point, and what is the compass direction of a line connecting your starting point to your final position? (If you represent the two legs of the walk as vector displacements \vec{A} and \vec{B} , as in Figure 3.53, then this problem asks you to find their sum \vec{R}=\vec{A}+\vec{B} .)
Solution:
Consider Figure 3.54A.
The resultant of the two vectors \vec{A} and \vec{B} is labeled \vec{R}. This \vec{R} is directed \theta ^{\circ} from the x-axis.
We shall use the right triangle formed to solve for the unknowns.
(a) Take the slope of the curve in Figure 2.64 to find the jogger’s velocity at t=2.5 s. (b) Repeat at 7.5 s. These values must be consistent with the graph in Figure 2.65.
Solution:
Part A
To find the slope at t=2.5 s, we need the position values at t= 0 s and t=5 s. When t = 0 \ \text{s}, x = 0 \ \text{m}, and when t = 5 \ \text{s}, x = 17.5 \ \text{m}. The velocity at t=2.5 s is
Construct the position graph for the subway shuttle train as shown in Figure 2.18(a). Your graph should show the position of the train, in kilometers, from t = 0 to 20 s. You will need to use the information on acceleration and velocity given in the examples for this figure.
(a) Position of the train over time. Notice that the train’s position changes slowly at the beginning of the journey, then more and more quickly as it picks up speed. Its position then changes more slowly as it slows down at the end of the journey. In the middle of the journey, while the velocity remains constant, the position changes at a constant rate. (b) The velocity of the train over time. The train’s velocity increases as it accelerates at the beginning of the journey. It remains the same in the middle of the journey (where there is no acceleration). It decreases as the train decelerates at the end of the journey. (c) The acceleration of the train over time. The train has positive acceleration as it speeds up at the beginning of the journey. It has no acceleration as it travels at constant velocity in the middle of the journey. Its acceleration is negative as it slows down at the end of the journey.
Note that the values are approximated to satisfy the given acceleration in the problem statement. The values may differ from one’s answer due to some uncertainties of a graph.
Using approximate values, calculate the slope of the curve in Figure 2.62 to verify that the velocity at t=30.0 s is approximately 0.24 m/s.
Solution:
We can obviously see from the graph that it is a straight line or approximately a straight line. In this case, the slope is constant.
To get an approximate slope at t=30 s, we can use the values at t=20 s and t=40 s. When t=20\ \text{s}, x=7\ \text{m} and when t=40\ \text{s}, x=12\ \text{m}.
Although not equal, the computed slope is almost the same with 0.24 m/s. This is due to the fact that values are uncertainties when using graphs. The difference is not really significant for this case.
Using approximate values, calculate the slope of the curve in Figure 2.62 to verify that the velocity at t=30.0 s is approximately 0.24 m/s. Assume all values are known to 2 significant figures.
Solution:
We can obviously see from the graph that it is a straight line or approximately a straight line. In this case, the slope is constant.
To get an approximate slope at t=30 s, we can use the values at t=20 s and t=40 s. When t=20\ \text{s}, x=7\ \text{m} and when t=40\ \text{s}, x=12\ \text{m}.
Although not equal, the computed slope is almost the same with 0.24 m/s. This is due to the fact that values are uncertain when using graphs. The difference is not really significant for this case.
(a) By taking the slope of the curve in Figure 2.60, verify that the velocity of the jet car is 115 m/s at t=20 s. (b) By taking the slope of the curve at any point in Figure 2.61, verify that the jet car’s acceleration is 5.0 m/s2 .
Solution:
Part A
Figure A shows the approximate slope of the curve at time 20 seconds.
To solve for the slope of this line, we need to approximate by using two points. In this case, we shall use the points at time 15 seconds and 25 seconds.
Approximately, when t=15\ \text{s}, the position is x=1000\ \text{m}, and when t=25\ \text{s}, the position is x=2150\ \text{m}. Thefore,
One can immediately figure out from the given graph that it is a straight line. The slope of the line can be computed by using any two points in the line.
Here, v=15\ \text{m/s} when t=0\ \text{s}, and v=40 \ \text{m/s} when t=5\ \text{s}. The acceleration is
A soft tennis ball is dropped onto a hard floor from a height of 1.50 m and rebounds to a height of 1.10 m. (a) Calculate its velocity just before it strikes the floor. (b) Calculate its velocity just after it leaves the floor on its way back up. (c) Calculate its acceleration during contact with the floor if that contact lasts 3.50 ms (3.50×10−3s) . (d) How much did the ball compress during its collision with the floor, assuming the floor is absolutely rigid?
A coin is dropped from a hot-air balloon that is 300 m above the ground and rising at 10.0 m/s upward. For the coin, find (a) the maximum height reached, (b) its position and velocity 4.00 s after being released, and (c) the time before it hits the ground.
Solution:
Part A
Consider Figure A.
We are interested in two positions. Position 1 is where the coin is dropped. At this position, the coin is 300 m above the ground, the time is 0 s, and the velocity is 10.0 m/s upward.
Position 2 is the highest point of the coin reaches. At this position, the velocity is equal to 0 m/s.
Position 1 is the initial position and position 2 is the final position. Solve for the value of y2.
\therefore The maximum height reached by the coin is about 305 meters from the ground.
Part B
We do not know the position 4 seconds after the coin has been released, the answer can be above or below the initial point. We can actually use one of the kinematical equations to solve for the final position given the time. Here, the initial position is the point of release and the final position is the point of interest at 4.00 seconds after release.
\therefore The coin is at a height of 262 meters above the ground 4.00 seconds after release. That is, the coin is already dropping and it is already below the release point.
Solving for the velocity 4.00 seconds after release considering the same initial and final position.
\therefore The coin has a velocity of 29.2 m/s directed downward 4.00 seconds after it is released. This confirms that the coin is indeed moving downwards at this point.
Part C
Considering figure C, we have two positions. Position 1 is the point of release 300 m above the ground with a velocity of 10 m/s upward. This is time 0 s.
The second position is at the ground where y=0 m. We are interested at the time in this position.
Considering position 1 as the initial position and position 2 as the final position.
You must be logged in to post a comment.