Tag Archives: Solution Manual for College Physics by Openstax

College Physics by Openstax Chapter 3 Problem 9


Show that the sum of the vectors discussed in Example 3.2 gives the result shown in Figure 3.24.

Figure 3.24

Solution:

So, we are given the two vectors shown below.

Vectors A and B

If we use the graphical method of adding vectors, we can join the two vectors using head-tail addition and come up with the following:

Figure 3.9B: Vectors A and B added graphically

The resultant is drawn from the tail of the first vectors (the origin) to the head of the last vector. The resultant is shown in red in the figure below.

Solve for the value of the angle 𝛼 by geometry.

\alpha = 66^\circ +\left( 180^\circ-112^\circ \right) = 134^\circ

Solve for the magnitude of the resultant using cosine law.

\begin{align*}
R^2 & = A^2+B^2-2AB\cos \alpha \\
R & = \sqrt{A^2+B^2-2AB\cos \alpha} \\
R & = \sqrt{\left( 27.5 \ \text{m} \right)^2+\left( 30.0 \ \text{m} \right)^2-2\left( 27.5\ \text{m} \right)\left( 30.0\ \text{m} \right) \cos 134^\circ} \\
R & =52.9380 \ \text{m} \\
R & = 52.9 \ \text{m} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}
\end{align*}

Solve for 𝛽 using sine law.

\begin{align*}
\frac{\sin \beta}{B} & = \frac{\sin \alpha}{R} \\
\beta & = \sin ^{-1} \left( \frac{B \sin \alpha }{R} \right) \\
\beta & = \sin ^{-1} \left( \frac{30.0\ \text{m} \sin 134^\circ}{52.9380 \ \text{m}} \right) \\
\beta & = 24.0573^\circ
\end{align*}

Finally, solve for 𝜃.

\theta = 66^\circ+24.0573^\circ = 90.1^\circ \ \qquad \ {\color{Orange} \left( \text{Answer} \right)}

The result is in conformity with that in figure 3.24 shown on the question shown above.


Advertisements
Advertisements

College Physics by Openstax Chapter 3 Problem 8


Show that the order of addition of three vectors does not affect their sum. Show this property by choosing any three vectors A, B, and C, all having different lengths and directions. Find the sum A + B + C then find their sum when added in a different order and show the result is the same. (There are five other orders in which A, B, and C can be added; choose only one.)


Solution:

Consider the three vectors shown in the figures below:

Vector A

Vector B

Vector C

First, we shall add them A+B+C. Using the head-tail or graphical method of vector addition, we have the figure shown below.

Figure 3.8B: The resultant force of A+B+C

Now, let us try to find the sum of the three vectors by reordering vectors A, B, and C. Let us try to find the sum of C+B+A in that order. The result is shown below.

Figure 3.8C: The resultant of 3 vectors added in different order.

We can see that the resultant is the same directed from the origin upward. This proves that the resultant must be the same even if the vectors are added in different order.


Advertisements
Advertisements

College Physics by Openstax Chapter 2 Problem 66


Figure 2.68 shows the position graph for a particle for 6 s. (a) Draw the corresponding Velocity vs. Time graph. (b) What is the acceleration between 0 s and 2 s? (c) What happens to the acceleration at exactly 2 s?

position graph for a particle for 6 s.
Figure 2.68

Solution:

Part A

The velocity of the particle is the slope of the position vs time graph. Since the position graph is composed of straight lines, we can say that the velocity is constant for several time ranges.

Time RangeSlope of the Position vs Time Graph
0 to 2 seconds=\frac{2-0}{2-0}=1\:\text{m/s}
2 to 3 seconds=\frac{-3-2}{3-2}=\frac{-5}{1}=-5\:\text{m/s}
3 to 5 seconds=0 \ \text{m/s}
5 to 6 seconds=\frac{-2-\left(-3\right)}{6-5}=\frac{1}{1}=1\:\text{m/s}

Based on the data in the table, we can draw the velocity diagram

velocity vs time graph
velocity vs time graph

Part B

Since the velocity is constant between 0 seconds and 2 seconds, we say that the acceleration is 0.

Part C

Since there is a sudden change in velocity at exactly 2 seconds in a very short amount of time, we say that the acceleration is undefined in this case.


Advertisements
Advertisements

College Physics by Openstax Chapter 2 Problem 65


A graph of v(t) is shown for a world-class track sprinter in a 100-m race. (See Figure 2.67). (a) What is his average velocity for the first 4 s? (b) What is his instantaneous velocity at t=5 s? (c) What is his average acceleration between 0 and 4 s? (d) What is his time for the race?

A graph of  v(t)  is shown for a world-class track sprinter in a 100-m race.
Figure 2.67

Solution:

Part A

To find the average velocity over the straight line graph of the velocity vs time shown, we just need to locate the midpoint of the line. In this case, the average speed for the first 4 seconds is

v_{\text{ave}}=6\:\text{m/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

Part B

Looking at the graph, the velocity at exactly 5 seconds is 12 m/s.

Part C

If we are given the velocity-time graph, we can solve for the acceleration by solving for the slope of the line.

Consider the line from time zero to time, t=4 seconds. The slope, or acceleration, is

a=\text{slope}=\frac{12\:\text{m/s}-0\:\text{m/s}}{4\:\text{s}}=3\:\text{m/s}^2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

Part D

For the first 4 seconds, the distance traveled is equal to the area under the curve.

\text{distance}=\frac{1}{2}\left(4\:\sec \right)\left(12\:\text{m/s}\right)=24\:\text{m}

So, the sprinter traveled a total of 24 meters in the first 4 seconds. He still needs to travel a distance of 76 meters to cover the total racing distance. At the constant rate of 12 m/s, he can run the remaining distance by

\text{t}=\frac{\text{distance}}{\text{velocity}}=\frac{76\:\text{m}}{12\:\text{m/s}}=6.3\:\sec

Therefore, the total time of the sprint is

\text{t}_{\text{total}}=4\:\sec +6.3\:\sec =10.3\:\sec \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

Advertisements
Advertisements

College Physics by Openstax Chapter 2 Problem 49


You throw a ball straight up with an initial velocity of 15.0 m/s. It passes a tree branch on the way up at a height of 7.00 m. How much additional time will pass before the ball passes the tree branch on the way back down?


Solution:

The known values are a=-9.80\:\text{m/s}^2; v_o=15.0\:\text{m/s}; y=7.00\:\text{m}

The applicable formula is.

y=v_ot+\frac{1}{2}at^2

Using this formula, we can solve it in terms of time, t.

t=\frac{-v_0\pm \sqrt{v_0^2+2ay}}{a}

Substituting the known values, we have

\begin{align*}
t & =\frac{-v_0\pm \sqrt{v_0^2+2ay}}{a} \\
t & =\frac{-15.0\:\text{m/s}\pm \sqrt{\left(15.0\:\text{m/s}\right)^2+2\left(-9.80\:\text{m/s}^2\right)\left(7.00\:\text{m}\right)}}{-9.80\:\text{m/s}^2} \\
t&=\frac{-15.0\:\text{m/s}\pm 9.37\:\text{m/s}}{-9.80\:\text{m/s}^2}
\end{align*}

We have two values for time, t. These two values represent the times when the ball passes the tree branch.

 t_1=\frac{-15.0\:m/s+9.37\:m/s}{-9.80\:m/s^2}=0.57\:sec \\
t_2=\frac{-15.0\:m/s-9.37\:m/s}{-9.80\:m/s^2}=2.49\:sec

Therefore, the total time between passing the branch is the difference between 2.49 seconds and 0.57 seconds.

t_2-t_1=2.49  \ \text{s} - 0.57 \ \text{s}=1.92 \ \text{s}  \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

Advertisements
Advertisements

Purchase College Physics Solution Manual


You can complete your purchase even if you do not have a Paypal account. Just click on the appropriate card type you have.

For concerns, please send an email to [email protected]

Buy the College Physics 2nd Edition Complete Solution Guide for only $49

College Physics by Openstax Complete Solution Manual by Engineering-Math.Org

This is a PDF copy of the complete guide to the problems and exercises of the book College Physics by Openstax. Expect the copy to be sent to your email address within 24 hours. If you have not heard from us within 24 hours, kindly send us a message to [email protected]

$49.00


Purchase Other Similar Solution Manuals

University Physics Volume I Complete Solution Guides

$49.00

University Physics Volume II Complete Solution Guides

$49.00

University Physics Volume III Complete Solution Guides

$49.00


Looking for another material? Kindly send us a message to [email protected] and we will get back to you within 24 hours.


Problem 6-1: Odometer reading based on the number of wheel revolutions


Semi-trailer trucks have an odometer on one hub of a trailer wheel. The hub is weighted so that it does not rotate, but it contains gears to count the number of wheel revolutions—it then calculates the distance traveled. If the wheel has a 1.15 m diameter and goes through 200,000 rotations, how many kilometers should the odometer read?


Solution:

The formula for the total distance traveled is

\Delta s=\Delta \theta \times r

Therefore, the total distance traveled is

\begin{align*}
\Delta s & =\left(200000\:\text{rotations}\:\times \frac{2\pi \:\text{radian}}{1\:\text{rotation}}\right)\left(\frac{1.15\:\text{m}}{2}\right) \\
\Delta s & =722566.3103\:\text{m} \\
\Delta s & =722.6\:\text{km} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

\end{align*}

Advertisements
Advertisements

College Physics by Openstax Chapter 5 Problem 1

A physics major is cooking breakfast when he notices that the frictional force between his steel spatula and his Teflon frying pan is only 0.200 N. Knowing the coefficient of kinetic friction between the two materials, he quickly calculates the normal force. What is it?


Solution:

The formula for friction is

f=\mu _{k\:}N

When we solve for the normal force, N, in terms of the other variables, we have

N=\frac{f}{\mu _k}

The coefficient of kinetic friction is 0.04. Therefore, the normal force is

\begin{align*}
N & =\frac{f}{\mu _k} \\
N & =\frac{0.200\:\text{newton}}{0.04} \\
N & =5.00\:\text{newton} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements

College Physics by Openstax Chapter 4 Problem 1


A 63.0-kg sprinter starts a race with an acceleration of 4.20 m/s2. What is the net external force on him?


Solution:

So, we are given mass, m = 63.0 \ \text{kg} , and acceleration, a = 4.20 \ \text{m/s}^2.

The net force has a formula 

\text{F}=\text{m}a

Substituting the given values, we have

\begin{align*}
F & = \left( 63.0 \ \text{kg} \right)\left( 4.20 \ \text{m/s}^2 \right) \\
F & = 265 \  \text{kg}\cdot \text{m/s}^2 \\
F & = 265 \ \text{N} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}
\end{align*}

Advertisements
Advertisements

College Physics by Openstax Chapter 3 Problem 1


Find the following for path A in Figure 3.52:
(a) The total distance traveled, and
(b) The magnitude and direction of the displacement from start to finish.

Figure 3.54 The various lines represent paths taken by different people walking in a city. All blocks are 120 m on a side
Figure 3.52 The various lines represent paths taken by different people walking in a city. All blocks are 120 m on a side


Solution:

Part A

The total distance traveled is 

\begin{align*}

\text{d} & =\left(3\times 120\ \text{m}\right)+\left(1\times 120\:\text{m}\right) \\
\text{d} & =480\:\text{m}  \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}\\

\end{align*}

Part B

The magnitude of the displacement is 

\begin{align*}

\text{s }& =\sqrt{\left( s_x \right)^{2\:}+\left( s_y \right)^2} \\
\text{s }& = \sqrt{\left(1\times 120\:\text{m}\right)^2+\left(3\times 120\:\text{m}\right)^2} \\
\text{s }& = 379\ \text{m} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}

\end{align*}

The direction is

\begin{align*}

 \theta & = \tan^{-1}\left(\frac{s_x}{s_y}\right) \\
\theta & = \tan^{-1}\left(\frac{1\times 120\:\text{m}}{3\times 120 \ \text{m}}\right) \\
\theta & =71.6^{\circ} ,\:\text{E of N} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}

\end{align*}

Advertisements
Advertisements