Tag Archives: special second ordered differential equations

Elementary Differential Equations by Dela Fuente, Feliciano, and Uy Chapter 9 Problem 1 – Special Second-Ordered Differential Equations


Find the General Solution

ddx(dydx)=6x+3\frac{d}{dx}\left(\frac{dy}{dx}\right)=\:6x\:+\:3

Solution:

ddx(dydx)=6x+3solve  the  equation  using  case  1,let  u=dydxdudx=(6x+3)using  separation  of  variable  divide  both  sides  by  dx,du=(6x+3)dxby  integrating  using  the  sum  rule:we  get,u=3x2+3x+C1substitute  the  value  of  u=dydxdydx=3x2+3x+C1using  separation  of  variable:dy=(3x2+3x+C1)dxapply  the  sum  rule:dy=3x2dx+3xdx+C1dxy=x3+3x22+C1x+C2\frac{d}{dx}\left(\frac{dy}{dx}\right)=\:6x\:+\:3 \\ solve\; the\; equation\; using\; case\; 1,\\ let\; u=\frac{dy}{dx} \\ \int \:\frac{du}{dx}\:=\:\int \:\left(6x\:+\:3\right)\\ using\; separation\; of\; variable\; divide\; both\; sides\; by\; dx,\\ \int \:du\:=\:\int \:\left(6x\:+\:3\right)dx\\ by\; integrating\; using\; the\; sum\; rule:\\ we\; get,\\ u=3x^2\:+\:3x\:+\:C_1\\ substitute\; the\; value\; of\; u=\frac{dy}{dx} \\ \frac{dy}{dx}=3x^2\:+\:3x\:+\:C_1\\ using\; separation\; of\; variable:\\ \int \:dy = \int \:\left(3x^2+3x\:+\:C_1\right)dx\\ apply\; the\; sum\; rule:\\ \int \:dy=\int \:3x^2dx+\int \:3xdx+ \int \:C_1dx\\ y=x^3+\frac{3x^2}{2}+C_1x+C_2\\

Advertisements
Advertisements

Elementary Differential Equations by Dela Fuente, Feliciano, and Uy Chapter 9 Problem 4 — Special Second-Ordered Differential Equations


Find the general solution of the differential equation

y+2y6x3=0y''+2y'-6x-3=0

Solution:

A second-order differential equation can be written in the form:

ay+by+cy=g(x)ay″ + by' + cy = g(x)

Therefore, the problem given is a second order linear equation.

Here are STEPS on how to get the general solution:

i. simplify the equation to a Second ODE Form

y+2y=6x+3y''+2y'=6x+3

ii. Let

y=P=dydxandy=dPdxdPdx+P2=6x+3\begin{align*} y' = P=\frac{dy}{dx} \\ \\ and \\ \\ y'' = \frac{dP}{dx} \\ \\ \frac{dP}{dx}+P2\:=\:6x+3 \end{align*}

iii. By recalling, we can see that the equation is in First-order linear differential equation form. Solving the simplified equation using FOLDE.

P(x)=2andQ(x)=6x+3dPdx+P2=6x+3\begin{align*} P(x) & =2 \\ and \\ Q(x) &=6x+3 \\ \\ \frac{dP}{dx}+P2\:& =\:6x+3 \end{align*}

Find the integrating factor

ɸ=eP(x)dxɸ=e  2dxɸ=e2x\begin{align*} ɸ & =e^{\int \:P\left(x\right)dx} \\ ɸ & =e^{\int \:\:2dx} \\ ɸ & =e^{2x} \end{align*}

Substituting the I.F. to the formula

Pɸ=ɸQ(x)dx+C1Pe2x=e2x(6x+3)dx+C1Pe2x=(e2x6x+3e2x)dx+C1\begin{align*} Pɸ & =\int \:ɸQ\left(x\right)dx+C_1 \\ Pe^{2x} & =\int \:e^{2x}(6x+3)dx+C_1 \\ Pe^{2x} & =\int \:\left(e^{2x}6x+3e^{2x}\right)dx+C_1 \end{align*}

Integrating the first term

e2x6xdx=6xe2xdx\begin{align*} \int \:e^{2x}6xdx= 6\cdot \int \:xe^{2x}dx \\ \end{align*}

Let u = 2x and du/2 = dx

32euudu\frac{3}{2}\int \:e^uudu

By IBP, Let v=u, dv=du and eudu, n=eu.

nvndvueu32  eudu=euueu=3e2xx32e2x\begin{align*} nv-\int ndv & \\ ue^u-\frac{3}{2}\int \:\:e^udu & = e^uu-e^u \\ & =3e^{2x}x-\frac{3}{2}e^{2x} \end{align*}

for the second term

3e2xdx\int \:3e^{2x}dx

Let u = 2x and du/2 = dx

32eudu=32eu=32e2x\begin{align*} \frac{3}{2}\int \:e^udu & =\frac{3}{2}e^u \\ & =\frac{3}{2}e^{2x} \end{align*}

Combining all the solved terms we get

Pe2x=3e2xx32e2x+32e2x+C1Pe2x=3e2xx+C1\begin{align*} Pe^{2x} & =3e^{2x}x-\frac{3}{2}e^{2x}+\frac{3}{2}e^{2x}+C_1 \\ Pe^{2x} & =3e^{2x}x+C_1 \end{align*}

Based on the equation that we derived it is now a separable differential equation, therefore,

[dydxe2x=3e2xx+C1]1e2xdydx=3x+C1e2xdy=(3x+C1e2x)dx+C2\begin{align*} &\left[\frac{dy}{dx}e^{2x}=3e^{2x}x+C_1\right]\frac{1}{e^{2x}} \\ \frac{dy}{dx} & =3x+\frac{C_1}{e^{2x}} \\ \int \:dy & =\int \:\left(3x+\frac{C_1}{e^{2x}}\right)dx+C_2 \end{align*}

GENERAL SOLUTION:

y=3x22C1e2x2+C2y=\frac{3x^2}{2}-\frac{C_1e^{-2x}}{2}+C_2

Advertisements
Advertisements

Elementary Differential Equations by Dela Fuente, Feliciano and Uy Chapter 9 Problem 5 — Special Second-Ordered Differential Equations


Find the general solution of the differential equation

yy+2(y)2=0yy''+2\left(y\right)^2=0

Solution:

Based on Special Second-Ordered Differential Equation: Special case 3

F(d2ydx2,dydx,y)=0F\left(\frac{d^2y}{dx^2},\:\frac{dy}{dx},\:y\right)=0

Denote and substitute to the given equation.

P=y=dydxPdpdy=y=d2ydx2P= y' =\frac{dy}{dx} \\ P\frac{dp}{dy}= y'' =\frac{d^2y}{dx^2}

We will have,

y(Pdpdx)+2(P)2=0y(P\frac{dp}{dx})+2(P)^2=0

Divide both sides with

1yP \:\frac{1}{yP}

We will come to,

dpdy+2Py=0\frac{dp}{dy}+\frac{2P}{y}=0

Tranpose,

2Py\frac{2P}{y}

We will have

dpdy=2Py\frac{dp}{dy}=-\frac{2P}{y}

Integrate both sides,

dpdy=2Py\int \frac{dp}{dy}=-\int\frac{2P}{y}

The equation will become a SEPARABLE DIFFERENTIAL EQUATION, multiply both sides with

dyP\frac{dy}{P}\:

We will come to the equation:

dpP=2ydy \frac{dp}{P}=-\frac{2}{y}dy

Integrate both sides,

dpP=2ydy\int \frac{dp}{P}=-\int\frac{2}{y}dy

The answer will be:

ln(P)=ln(y2)+lnC\ln \left(P\right)=\ln \left(y^{-2}\right)+lnC

Apply logarithmic definition and exponent rule

logab=cthen,b=acab+c=abacloga^b=c\:then,\:b=a^c\\a^{b+c}=a^ba^c

The answer will be:

P=Cy2P=\frac{C}{y^2}

Recall that

P=dydxP=\frac{dy}{dx}

Substitute the original value of P,

dydx=Cy2\frac{dy}{dx}=\frac{C}{y^2}

Again, this is a Separable Differential Equation, multiply both sides with:

y2dxy^{2}dx

It will become

y2dy=Cdxy^{2}dy=Cdx

Integrate both sides,

y2dy=Cdx\int y^{2}dy=\int Cdx

The answer will be

y33=C1x+C2\frac{y^3}{3}=C1x+C2

Multiply both sides with 3 and the final answer will be

y3=C1x+C2y^3=C_1x+C_2

You can still solve it explicitly,

y=C1x+C23y=\sqrt[3]{C_1x+C_2}

Advertisements
Advertisements

Elementary Differential Equations by Dela Fuente, Feliciano, and Uy Chapter 9 Problem 6 — Special Second-Ordered Differential Equations


Solve the following differential equation

yy(y)2+y=0yy''-\left(y'\right)^2+y'=0

Solutions:

Basically, We need to make the orders of each term to 1. To be able to further break down the equation.

soweletP=y             Pdpdy=yso\:we\:let\:P=y' \\ \:\:\:\:\:\:\:\:\:\:\:\:\:P\frac{dp}{dy}=y''

Substituting to the equation, we get

yPdPdyP2+P=0yP\frac{dP}{dy}-P^2+P=0

Removing the variables y and P from the 1st term we get

dPdxPy+1y=0      ,theequationhasbecomeaFOLDE  dPdyPy=1y           T(y)=1y,     Q(y)=1y    ϕ=e1ydy=y1         Pϕ=ϕQ(y)dy+C1            Py1=y1(y1)dy+C1Py1=y2dy+C1Py=1y+C1    P=1+yC1dydx=1+yC1\frac{dP}{dx}-\frac{P}{y}+\frac{1}{y}=0\:\:\:\:\:\: , the \:equation\:has\:become\:a \:FOLDE\\ \;\\ \frac{dP}{dy}-\frac{P}{y}=-\frac{1}{y}\:\:\:\:\:\:\:\:\:\:\:T\left(y\right)=-\frac{1}{y},\:\:\:\:\:Q\left(y\right)=-\frac{1}{y}\\ \:\\\:\:\:\: \phi =e^{\int \:-\frac{1}{y}dy}\\ =y^{-1} \\\:\:\:\:\:\:\:\:\:P\phi=\int\phi\:Q(y)dy\:+\:C_{1} \\\:\:\:\:\:\:\:\:\:\:\:\:Py^{-1}=\int \:y^{-1}\left(-y^{-1}\right)dy+C_{1} \\ Py^{-1}=\int \:-y^{-2}dy+C_{1} \\ \:\\ \frac{P}{y}=\frac{1}{y}+C_{1} \\\: \:\\\:\: P=1+yC_{1} \\ \frac{dy}{dx}=1+yC_{1}

By means of Separation of Variables

dy1+yC1=dxdy1+yC1=dx        letu=1+yC1      du=C1dyduC1=dy   1C1duu=dx           1C1lnu=x+C2\\ \frac{dy}{1+yC_{1}}=\:dx \\ \int \:\frac{dy}{1+yC_{1}}=\int \:dx \\\:\:\:\:\:\:\:\: let\:u=1+yC_{1} \\\:\:\:\:\:\: du=C_{1}dy\\ \frac{du}{C_{1}}=dy \\\:\:\: \frac{1}{C_{1}}\int \:\frac{du}{u}=\int \:dx \\\:\:\:\:\:\:\:\:\:\:\: \frac{1}{C_{1}}ln\:u=x+C_{2}

We get

ln1+yC1=C1x+C2ln\left|1+yC_{1}\right|=C_{1}x+C_{2}

Advertisements
Advertisements