Tag Archives: special second ordered equations

Elementary Differential Equations by Dela Fuente, Feliciano, and Uy Chapter 9 Problem 1 – Special Second-Ordered Differential Equations


Find the General Solution

ddx(dydx)=6x+3\frac{d}{dx}\left(\frac{dy}{dx}\right)=\:6x\:+\:3

Solution:

ddx(dydx)=6x+3solve  the  equation  using  case  1,let  u=dydxdudx=(6x+3)using  separation  of  variable  divide  both  sides  by  dx,du=(6x+3)dxby  integrating  using  the  sum  rule:we  get,u=3x2+3x+C1substitute  the  value  of  u=dydxdydx=3x2+3x+C1using  separation  of  variable:dy=(3x2+3x+C1)dxapply  the  sum  rule:dy=3x2dx+3xdx+C1dxy=x3+3x22+C1x+C2\frac{d}{dx}\left(\frac{dy}{dx}\right)=\:6x\:+\:3 \\ solve\; the\; equation\; using\; case\; 1,\\ let\; u=\frac{dy}{dx} \\ \int \:\frac{du}{dx}\:=\:\int \:\left(6x\:+\:3\right)\\ using\; separation\; of\; variable\; divide\; both\; sides\; by\; dx,\\ \int \:du\:=\:\int \:\left(6x\:+\:3\right)dx\\ by\; integrating\; using\; the\; sum\; rule:\\ we\; get,\\ u=3x^2\:+\:3x\:+\:C_1\\ substitute\; the\; value\; of\; u=\frac{dy}{dx} \\ \frac{dy}{dx}=3x^2\:+\:3x\:+\:C_1\\ using\; separation\; of\; variable:\\ \int \:dy = \int \:\left(3x^2+3x\:+\:C_1\right)dx\\ apply\; the\; sum\; rule:\\ \int \:dy=\int \:3x^2dx+\int \:3xdx+ \int \:C_1dx\\ y=x^3+\frac{3x^2}{2}+C_1x+C_2\\

Advertisements
Advertisements

Elementary Differential Equations by Dela Fuente, Feliciano, and Uy Chapter 9 Problem 4 — Special Second-Ordered Differential Equations


Find the general solution of the differential equation

y+2y6x3=0y''+2y'-6x-3=0

Solution:

A second-order differential equation can be written in the form:

ay+by+cy=g(x)ay″ + by' + cy = g(x)

Therefore, the problem given is a second order linear equation.

Here are STEPS on how to get the general solution:

i. simplify the equation to a Second ODE Form

y+2y=6x+3y''+2y'=6x+3

ii. Let

y=P=dydxandy=dPdxdPdx+P2=6x+3\begin{align*} y' = P=\frac{dy}{dx} \\ \\ and \\ \\ y'' = \frac{dP}{dx} \\ \\ \frac{dP}{dx}+P2\:=\:6x+3 \end{align*}

iii. By recalling, we can see that the equation is in First-order linear differential equation form. Solving the simplified equation using FOLDE.

P(x)=2andQ(x)=6x+3dPdx+P2=6x+3\begin{align*} P(x) & =2 \\ and \\ Q(x) &=6x+3 \\ \\ \frac{dP}{dx}+P2\:& =\:6x+3 \end{align*}

Find the integrating factor

ɸ=eP(x)dxɸ=e  2dxɸ=e2x\begin{align*} ɸ & =e^{\int \:P\left(x\right)dx} \\ ɸ & =e^{\int \:\:2dx} \\ ɸ & =e^{2x} \end{align*}

Substituting the I.F. to the formula

Pɸ=ɸQ(x)dx+C1Pe2x=e2x(6x+3)dx+C1Pe2x=(e2x6x+3e2x)dx+C1\begin{align*} Pɸ & =\int \:ɸQ\left(x\right)dx+C_1 \\ Pe^{2x} & =\int \:e^{2x}(6x+3)dx+C_1 \\ Pe^{2x} & =\int \:\left(e^{2x}6x+3e^{2x}\right)dx+C_1 \end{align*}

Integrating the first term

e2x6xdx=6xe2xdx\begin{align*} \int \:e^{2x}6xdx= 6\cdot \int \:xe^{2x}dx \\ \end{align*}

Let u = 2x and du/2 = dx

32euudu\frac{3}{2}\int \:e^uudu

By IBP, Let v=u, dv=du and eudu, n=eu.

nvndvueu32  eudu=euueu=3e2xx32e2x\begin{align*} nv-\int ndv & \\ ue^u-\frac{3}{2}\int \:\:e^udu & = e^uu-e^u \\ & =3e^{2x}x-\frac{3}{2}e^{2x} \end{align*}

for the second term

3e2xdx\int \:3e^{2x}dx

Let u = 2x and du/2 = dx

32eudu=32eu=32e2x\begin{align*} \frac{3}{2}\int \:e^udu & =\frac{3}{2}e^u \\ & =\frac{3}{2}e^{2x} \end{align*}

Combining all the solved terms we get

Pe2x=3e2xx32e2x+32e2x+C1Pe2x=3e2xx+C1\begin{align*} Pe^{2x} & =3e^{2x}x-\frac{3}{2}e^{2x}+\frac{3}{2}e^{2x}+C_1 \\ Pe^{2x} & =3e^{2x}x+C_1 \end{align*}

Based on the equation that we derived it is now a separable differential equation, therefore,

[dydxe2x=3e2xx+C1]1e2xdydx=3x+C1e2xdy=(3x+C1e2x)dx+C2\begin{align*} &\left[\frac{dy}{dx}e^{2x}=3e^{2x}x+C_1\right]\frac{1}{e^{2x}} \\ \frac{dy}{dx} & =3x+\frac{C_1}{e^{2x}} \\ \int \:dy & =\int \:\left(3x+\frac{C_1}{e^{2x}}\right)dx+C_2 \end{align*}

GENERAL SOLUTION:

y=3x22C1e2x2+C2y=\frac{3x^2}{2}-\frac{C_1e^{-2x}}{2}+C_2

Advertisements
Advertisements

Elementary Differential Equations by Dela Fuente, Feliciano, and Uy Chapter 9 Problem 2 — Special Second-Ordered Differential Equations


Question:

ddx(xdydx+(1+x)y)=12  ;dydx=0,y=0,x=1\frac{d}{dx}\left(x\:\frac{dy}{dx}\:+\left(1+x\right)\:y\right)\:=12\:\:;\:\frac{dy}{dx}=0,\:y=0,\:x=1

Solution:

Since the equation is in the form d/dx (dy/dx + y P(x) = Q(x) , we use Case 1

letu=xdydx+(1+x)ydudx=12u=12x+C1\begin{align*} let\:u & = x\frac{dy}{dx}+\left(1+x\right)\:y \\ \int \:\frac{du}{dx}\:&=\int \:12 \\u &=12x+C_1 \end{align*}

Solving for the value of C1 using the initial values.

xdydx+(1+x)y=12x+C1;dydx=0,y=0,x=11(0)+(1+1)0=12(1)+C10+0=12+C112=C1\begin{align*} x\frac{dy}{dx}+\left(1+x\right)y\: & =12x\:+C_1\:;\:\frac{dy}{dx}=0,\:y=0,\:x=1 \\1(0) + (1+1)0 & = 12(1) + C_1 \\0+0 & =12+C_1 \\-12 & =C_1 \end{align*}

Rewriting the equation into the general form of a first-order linear differential equation (FOLDE).

[xdydx+(1+x)y=12x12]1xdydx+(1+xx)y=1212xdydx+(1x+1)y=1212x\left[x\frac{dy}{dx}+\left(1+x\right)y=12x-12\right]\frac{1}{x} \\\frac{dy}{dx}+\left(\frac{1+x}{x}\right)y=12-\frac{12}{x} \\\frac{dy}{dx}+\left(\frac{1}{x}+1\right)y=12-\frac{12}{x}

Since the equation is now in the form of dy/dx + y P(x) = Q(x), we use FOLDE

dydx+(1x+1)y=1212x\\\frac{dy}{dx}+\left(\frac{1}{x}+1\right)y=12-\frac{12}{x}

From the general form of a first-order differential equation, we have

P(x)=(1x+1)Q(x)=1212x\\P \left( x \right)= \left(\frac{1}{x}+1\right) \\Q\left( x \right)= 12-\frac{12}{x}

Compute for the integrating factor

ϕ=eP(x)dxϕ=e(1x+1)dxϕ=elnx+xϕ=x(ex)\begin{align*} \phi &= e^ {\int P\left(x \right) dx} \\\phi & =e^{\int \:\left(\frac{1}{x}+1\right)dx} \\\phi & \:=e^{\ln x+x} \\\phi & \:=x\left(e^x\right) \end{align*}

Substituting everything to the solution of a first-order linear differential equation, we have

y(xex)=xex(1212x)dx+C2y(xex)=(12xex12ex)dx+C2yxex=12xex12exdx+C2y(xe^x)=\int xe^x\left(12-\frac{12}{x}\right)dx+C_2 \\y\left(xe^x\right)=\int \left(12xe^x-12e^x\right)dx+C_2 \\yxe^x=\int 12xe^x-\int \:12e^x\:dx+C_2​

Use Integration by Parts to solve for the first integral

12xexdx=12xexdxu=xdu=dxdv=ex v=exThereforeuvvdu=xexexdx=xexexConsequently12xexdx=12(xexex)\begin{align*} \int \:12xe^xdx & = 12 \int xe^x dx\\ u = x & &du=dx \\ dv = & e^x \ & v=e^x \\ \text{Therefore} \\ uv-\int \:vdu & =xe^x-\int \:e^xdx \\ & =xe^x-e^x \\ \text{Consequently} \\ \int \:12xe^xdx & = 12 \left( xe^x-e^x\right) \end{align*}

Therefore,

yxex=12(xexex)12ex+C2yxex=12xex12ex12ex+C2yxex=12xex24ex+C2\begin{align*} yxe^x & =12\left(xe^x-e^x\right)-12e^x+C_2 \\yxe^x &=12xe^x-12e^x-12e^x+C_2 \\yxe^x &=12xe^x-24e^x+C_2 \end{align*}

Solving for C2

yx=12x24+C2ex  ;y=0,x=10(1)=12(1)24+C2e10=1224e+C2e10=12+C2e112e1=C2\begin{align*} yx & =12x-24+\frac{C_2}{e^x}\:\:;\:y=0,\:x=1 \\0\left(1\right) & =12\left(1\right)-24+\frac{C_2}{e^1}\: \\0 & =12-24e+\frac{C_2}{e^1}\: \\0 &=-12+\frac{C_2}{e^1}\: \\12e^1 & =C_2\: \end{align*}

Therefore, the solution to the problem is

yx=12x24+12e1exoryx=12x24+12e1xyx=12x-24+\frac{12e^1}{e^x} \\or \\yx=12x-24+12e^{1-x}

Elementary Differential Equations by Dela Fuente, Feliciano, and Uy Chapter 9 Problem 1 — Special Second-Ordered Differential Equations


Find the general solution of the differential equation

ddx(dydx)=6x+3\frac{d}{dx}\left(\frac{dy}{dx}\right)=6x+3

Solution:

ddx(dydx)=6x+3 letu=dydx dudx=6x+3 Integrate,dudx=(6x+3)dx dudx=6xdx+3dx u=6x22+3x+C1 u=3x2+3x+C1 Substitute,dydx=3x2+3x+C1 dy=(3x2+3x+C1)dx Integrate,dy=(3x2+3x+C1)dx dy=3x2dx+3xdx+C1dx y=3x33+3x22+C1x+C2 Simplify,y=x3+3x22+C1x+C2\begin{align*} \frac{d}{dx}\left(\frac{dy}{dx}\right) & =6x+3 \\\ \\ let\:u & =\frac{dy}{dx} \\\ \\ \frac{du}{dx} & =6x+3 \\\ \\ Integrate,\\ \int \frac{du}{dx} & =\int (6x+3)dx \\\ \\ \int \frac{du}{dx} & =6\int xdx+3\int dx \\\ \\ u & =\frac{6x^2}{2}+3x+C_1 \\\ \\ u & =3x^2+3x+C_1 \\\ \\ Substitute, \\ \frac{dy}{dx} & =3x^2+3x+C_1 \\\ \\ dy & =\left(3x^2+3x+C_1\right)dx \\\ \\ Integrate,\\ \int dy & =\int (3x^2+3x+C_1)dx \\\ \\ \int dy & =3\int x^2dx+3\int xdx+C_1\int dx \\\ \\ y & =\frac{3x^3}{3}+\frac{3x^2}{2}+C_1x+C_2 \\\ \\ Simplify, \\ y & =x^3+\frac{3x^2}{2}+C_1x+C_2 \\ \end{align*}

Advertisements
Advertisements
Header Photos for Elementary Differential Equations Chapter 9 Special Second Ordered Equations

Chapter 9: Special Second-Ordered Equations


Supplementary Problems

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Problem 6


Advertisements
Advertisements