Evaluate each of the following to three significant figures and express each answer in SI units using an appropriate prefix: (a) (0.631 Mm)/(8.60kg)², (b) (35 mm)² (48 kg)³.
Solution:
a)
b)
a)
b)
First, we will convert 1 Pa to lb/ft².
Engineering Mechanics: Statics 13th Edition by RC Hibbeler, Problem 1-7
Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 1-16
First, we will convert 1 Pa to lb/ft².
\begin{align*} 1\ \text{Pa} & =\frac{1\:\text{N}}{\text{m}^2}\left(\frac{1\:\text{lb}}{4.4482\:\text{N}}\right)\left(\frac{0.3048^2\:\text{m}^2}{1\:\text{ft}^2}\right)\\ &=20.9\left(10^{-3}\right)\:\text{lb/ft}^2 \end{align*}
Next, we convert 14.7 lb/in2 to Pa
\begin{align*} 14.7 \ \text{lb/in}^2 & =\frac{14.7\:\text{lb}}{\text{in}^2}\left(\frac{4.448\:\text{N}}{1\:\text{lb}}\right)\left(\frac{144\:\text{in}^2}{1\:\text{ft}^2}\right)\left(\frac{1\:\text{ft}^2}{0.3048^2\:\text{m}^2}\right)\\ & =101.3\left(10^3\right)\:\text{N/m}^2\\ & =101.3\left(10^3\right) \text{Pa}\\ \end{align*}
Statics of Rigid Bodies 14th Edition by RC Hibbeler, Problem 1-7
Solution:
Part A
\begin{align*} 0.000 \ 431 \ \text{kg} & = 0.431 \times 10^{-3} \ \text{kg}\\ & = 0.431\times 10^{-3} \times 10^3 \ \text{g} \\ & = 0.431 \ \text{g} \end{align*}
Part B
\begin{align*} 35.3\left( 10^3 \right) \ \text{N} & = 35.3 \ \text{kN} \end{align*}
Part C
\begin{align*} 0.00532 \ \text{km} & = 0.00532 \times 10^3 \ \text{m} \\ & = 5.32 \times 10^{-3} \times 10^3 \ \text{m} \\ & = 5.32 \ \text{m} \end{align*}
Statics of Rigid Bodies 14th Edition by RC Hibbeler, Problem 1-9
Statics of Rigid Bodies 14th Edition by RC Hibbeler, Problem 1-2
Solution:
Part A
\begin{align*} \text{KN}/\mu\text{s} & = \frac{\left( 10 \right)^3\ \text{N}}{\left( 10 \right)^{-6}\ \text{s}} \\ & =\left( 10 \right)^9 \ \text{N/s}\\ & = \text{GN/s} \end{align*}
Part B
\begin{align*} \text{Mg/mN} & =\frac{\left(10^6\right)\text{g}}{\left(10^{-3}\right)\text{N}}\\ & = 10^9\:\text{g/N}\\ & =\text{Gg/N} \end{align*}
\begin{align*} \text{MN}/\left(\text{kg}\cdot \text{ms}\right) & =\frac{10^6\:\text{N}}{\text{kg}\cdot \left(10^{-3}\right)\text{s}}\\ & =10^9\:\frac{\text{N}}{\text{kg}\cdot \text{s}}\\ & =\text{GN}/\left(\text{kg}\cdot \text{s}\right) \end{align*}
You must be logged in to post a comment.