Tag Archives: statics

Statics 3.3 – Solving for the magnitude and direction of a force for equilibrium | Hibbeler 14th Edition


Determine the magnitude and direction θ of F so that the particle is in equilibrium.

Statics 14E Problem 3.3 Forces in Equilibrium with unknown force and its direction

Solution:

Free-body Diagram:

Equilibrium Equation:

Summation of forces in the x-direction:

\begin{aligned}
\xrightarrow{+} \: \sum F_x & = 0 & \\
5 \: \text{kN}+F \sin \theta - 8 \: \text {kN} \cos 30 \degree - 4\: \text{kN} \cos 60 \degree & = 0  & \\
F \sin \theta &= 3.9282  & (1)

\end{aligned}

Summation of forces in the y-direction:

\begin{aligned}
+\uparrow \sum F_y & = 0  &\\
8 \sin 30 \degree - 4 \sin 60 \degree - F \cos \theta & =0 &\\
F \cos \theta & = 0.5359 & (2)\\

\end{aligned}

We now have two equations. Divide Eq (1) by (2)

\begin{aligned}
\dfrac{F \sin \theta}{F \cos \theta}  &= \dfrac{3.9282}{0.5359} \\

\dfrac{ \sin \theta}{ \cos \theta} & = 7.3301 \\ 

\end{aligned}

We know that \tan \theta = \dfrac{\sin \theta}{\cos \theta} :

\begin{aligned}
\tan \theta &=7.3301 \\
\theta & = \tan^{-1}7.3301\\
\textcolor{blue}\theta & \textcolor{blue}{=82.2\degree}\\
\end{aligned}

Substituting this result to equation (1), we have

\begin{aligned}
F\sin 82.2 \degree & = 3.9282 \\
\textcolor{blue}F & \textcolor{blue}{=3.96 \ \text{kN}}
\end{aligned}

Hibbeler Statics 14E P1.1 — Converting mass to weight in newtons


What is the weight in newtons of an object that has a mass of (a) 8 kg, (b) 0.04 kg, and (c) 760 Mg?

Statics of Rigid Bodies 14th Edition by RC Hibbeler, Problem 1-1


Solution:

Part A: To convert the given mass in kilogram to newton force, we simply need to multiply by the acceleration due to gravity of 9.81 m/s2. We need to take into account that 1\:\text{kg m/s}^2\:=1\:\text{N} .

\begin {aligned}

8\:\text{kg} & =8\:\text{kg}\times 9.81\:\text{m/s}^2 \\
&=78.48\:\text{N}

\end {aligned}

Part B: Using the same principle from Part A, we have

\begin {aligned}

0.04\:\text{kg}&=0.04\:\text{kg}\times 9.81\:\text{m/s}^2\\
&=0.3924\:\text{N}

\end {aligned}

Part C: So, we are given 760 Mg (megagram). We know that 1 Mg is equivalent to 1000 kg. Therefore, 760 Mg is equal to 760,000 kg. Therefore, we have

\begin {aligned}
760\:000\:\text{kg}&=760\:000\:\text{kg}\times 9.81\:\text{m/s}^2\\
&=7\:455\:600\:\text{N}
\end{aligned}

Advertisements

Hibbeler Statics 14E P2.2 — Resultant of a System of Two Forces


Determine the magnitude of the resultant force \textbf{F}_{\text{R}} = \textbf{F}_1 + \textbf{F}_2 and its direction, measured counterclockwise from the positive x axis. 

Engineering Mechanics: Statics figure for Problem 2-3

Engineering Mechanics: Statics 13th Edition by RC Hibbeler, Problem 2-1
Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 2-3


SOLUTION:

The parallelogram law of the force system is shown.

Consider the triangle AOB.

Using cosine law to solve for the resultant force \textbf{F}_{\text{R}}

\begin{align*}
\textbf{F}_\text{R} & =\sqrt{\left(250\right)^2+\left(375\right)^2-2\left(250\right)\left(375\right) \cos\:75^{\circ} }\\
& =393.2 \ \text{lb}\\
& =393\:\text{lb}\\
\end{align*}

The value of angle θ can be solved using sine law. 

\begin{align*}
\frac{393.2}{\sin\:\left(75^{\circ} \right)} & = \frac{250}{\sin\:\theta } \\
\sin \theta & = \frac{250 \ \sin75 \degree}{393.2}\\
\theta & =\sin^{-1} \left(\frac{250 \ \sin75 \degree}{393.2}\right)\\
\theta & = 37.89^{\circ}\\
\end{align*}

Solve for the unknown angle \phi .

\phi =360^{\circ} -45^{\circ} +37.89^{\circ} =353^{\circ} 

The resultant force has a magnitude of 393 lb and is located 353º measured counterclockwise from the positive x-axis.


Advertisements
Advertisements

Computing the mass and weight of a man on earth and on the moon


If a man weighs 155 lb on earth, specify (a) his mass in slugs, (b) his mass in kilograms, and (c) his weight in newtons. If the man is on the moon, where the acceleration due to gravity is gm=5.30 ft/s², determine (d) his weight in pounds, and (e) his mass in kilograms.

Engineering Mechanics: Statics 13th Edition by RC Hibbeler, Problem 1-21
Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 1-20


Solution:

Part A

From the formula, \text{W}=\text{mg}, we can solve for the mass by dividing the weight by the acceleration due to gravity. That is

\begin{align*}
\text{m} & = \frac{\text{W}}{\textbf{g}}\\
& = \frac{155\ \text{lb}}{32.2 \ \text{ft/s}^2}\\
& = 4.81 \ \text{slug}\\
\end{align*}

Part B

Convert the slug to kilograms, knowing that 1 slug = 14.59 kg.

\begin{align*}
\begin{align*}
\text{m} & = \left( \frac{155}{32.2} \text{slug}\right)\left( \frac{14.59 \ \text{kg}}{1 \ \text{kg}} \right)\\
& = 70.2 \ \text{kg}\\
\end{align*}
\end{align*}

Part C

Convert the 155 lb to newtons using 1 lb = 4.448 N.

\begin{align*}
\textbf{W} & = 155 \ \text{lb}\times \frac{4.448 \ \text{N}}{1 \ \text{lb}}\\
& = 689 \ \text{N}\\
\end{align*}

Part D

Using the same formulas, but now \textbf{g}=5.30 \ \text{ft/s}^2.

\textbf{W}=155\left(\frac{5.30}{32.2}\right)=25.5\:\text{lb}

Part E

\textbf{m}=155\left(\frac{14.59\:\text{kg}}{32.2}\right)=70.2\:\text{kg}

Advertisements
Advertisements

The force of gravity acting between two particles


Two particles have a mass of 8 kg and 12 kg, respectively. If they are 800 mm apart, determine the force of gravity acting between them. Compare this result with the weight of each particle.

Engineering Mechanics: Statics 13th Edition by RC Hibbeler, Problem 1-20
Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 1-21


Solution:

The force of gravity acting between them:

\begin{align*}
\textbf{F} & =\textbf{G}\cdot \frac{\text{m}_1\text{m}_2}{\text{r}^2}\\
& =66.73\left(10^{-12}\right) \text{m}^3/ \left( \text{kg} \cdot \text{s}^2 \right)   \left[\frac{8 \  \text{kg} \left(12\ \text{kg}\right)}{\left(0.8\ \text{m} \right)^2}\right]\\
&=10\left(10^{-9}\right)\ \text{N}\\
& =10.0 \ \text{nN}\\
\end{align*}

The weight of the 8 kg particle

\textbf{W}_1=8\left(9.81\right)=78.5\:\text{N}

Weight of the 12 kg particle

\textbf{W}_2=12\left(9.81\right)=118\:\text{N}

Advertisements
Advertisements

Expressing the Density of Water in SI Units


Water has a density of 1.94 slug/ft³. What is the density expressed in SI units? Express the answer to three significant figures.

Engineering Mechanics: Statics 13th Edition by RC Hibbeler, Problem 1-19
Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 1-17


Solution:

\begin{align*}
\rho _w & =\left(\frac{1.94\:\text{slug}}{1\:\text{ft}^3}\right)\left(\frac{14.59\:\text{kg}}{1\:\text{slug}}\right)\left(\frac{1\:\text{ft}^3}{0.3048^3\:\text{m}^3}\right) \\
& =\left(\frac{1.94\:\text{slug}}{1\:\text{ft}^3}\right)\left(\frac{14.59\:\text{kg}}{1\:\text{slug}}\right)\left(\frac{1\:\text{ft}^3}{0.3048^3\:\text{m}^3}\right) \\
& =999.6\:\frac{\text{kg}}{\text{m}^3}\\
& =1.00\:\text{Mg/m}^3\\
\end{align*}

Advertisements
Advertisements

Showing How an Equation is Dimensionally Homogeneous


Using the SI system of units, show that Eq. 1–2 is a dimensionally homogeneous equation which gives F in newtons. Determine to three significant figures the gravitational force acting between two spheres that are touching each other. The mass of each sphere is 200 kg and the radius is 300 mm.

Engineering Mechanics: Statics 13th Edition by RC Hibbeler, Problem 1-18
Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 1-15


Solution:

To prove that F is in Newtons, we have

\begin{align*}
\text{F} & =\text{G}\cdot \frac{\text{m}_1\text{m}_2}{\text{r}^2}\\
& =\left(\frac{\text{m}^3}{\text{kg}\cdot \text{s}^2}\right)\left(\frac{\text{kg}\cdot \text{kg}}{\text{m}^2}\right)\\
& =\frac{\text{kg}\cdot \text{m}}{\text{s}^2}\\
& =\text{N}
\end{align*}

Now, if we substitute the given values into the equation

\begin{align*}
\text{F} & = 66.73\left(10^{-12}\right)\left[\frac{200\left(200\right)}{0.6^2}\right]\\
& = 7.41\left(10^{-6}\right) \text{N}\\
& =7.41\ \mu  \text{N}\\
\end{align*}

Advertisements
Advertisements

Evaluation of Expressions to SI Units with Appropriate Prefix


Evaluate each of the following to three significant figures and express each answer in SI units using an appropriate prefix: (a) 354 mg (45 km)/(0.0356 kN), (b) (0.00453 Mg)(201 ms), and (c) 435 MN/23.2 mm.

Engineering Mechanics: Statics 13th Edition by RC Hibbeler, Problem 1-11
Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 1-18


Solution:

Part A

\begin{align*}
\frac{\left(354\:\text{mg}\right)\left(45\:\text{km}\right)}{0.0356\:\text{kN}} & = \frac{\left[354\left(10^{-3}\right)\:\text{g}\right]\left[45\left(10^3\right)\:\text{m}\right]}{0.0356\:\left(10^3\right)\:\text{N}}\\
& = \frac{0.447\:\left(10^3\right)\text{g}\cdot \text{m}}{\text{N}}\\
& = 0.447\:\text{kg}\cdot \text{m/N}
\end{align*}

Part B

\begin{align*}
\left(0.00453\:\text{Mg}\right)\left(201\:\text{ms}\right) & =\left[4.53\left(10^{-3}\right)\left(10^3\right)\text{kg}\right]\left[201\:\left(10^{-3}\right)\text{s}\right]\\
& =0.911\:\text{kg}\cdot \text{s}\\
\end{align*}

Part C

\begin{align*}
435\:\text{MN}/23.2\:\text{mm} & =\frac{435\:\left(10^6\right)\:\text{N}}{23.2\:\left(10^{-3}\right)\:\text{m}}\\
& = \frac{18.75\left(10^9\right)\:\text{N}}{\text{m}}\\
& =18.8\:\text{GN/m}
\end{align*}

Advertisements
Advertisements

Converting Measurement from Pounds Per Square Inch to Pascal


The pascal (Pa) is actually a very small unit of pressure. To show this, convert 1 Pa = 1N/m² to lb/ft². Atmospheric pressure at sea level is 14.7 lb/in². How many pascals is this?

Engineering Mechanics: Statics 13th Edition by RC Hibbeler, Problem 1-7
Engineering Mechanics: Statics 14th Edition by RC Hibbeler, Problem 1-16


Solution:

First, we will convert 1 Pa to lb/ft².

\begin{align*}
1\ \text{Pa} & =\frac{1\:\text{N}}{\text{m}^2}\left(\frac{1\:\text{lb}}{4.4482\:\text{N}}\right)\left(\frac{0.3048^2\:\text{m}^2}{1\:\text{ft}^2}\right)\\
&=20.9\left(10^{-3}\right)\:\text{lb/ft}^2
\end{align*}

Next, we convert 14.7 lb/in2 to Pa

\begin{align*}
14.7 \ \text{lb/in}^2 & =\frac{14.7\:\text{lb}}{\text{in}^2}\left(\frac{4.448\:\text{N}}{1\:\text{lb}}\right)\left(\frac{144\:\text{in}^2}{1\:\text{ft}^2}\right)\left(\frac{1\:\text{ft}^2}{0.3048^2\:\text{m}^2}\right)\\
& =101.3\left(10^3\right)\:\text{N/m}^2\\
& =101.3\left(10^3\right) \text{Pa}\\
\end{align*}

Advertisements
Advertisements

Expressing units to correct SI form using appropriate prefix


Represent each of the following combinations of units in the correct SI form using an appropriate prefix: (a) m/ms, (b) μkm, (c) ks/mg, and (d) km·μN.

Statics of Rigid Bodies 14th Edition by RC Hibbeler, Problem 1-9


Solution:

Part A

\displaystyle \text{m/ms}=\left(\frac{\text{m}}{10^{-3}\:\text{s}}\right)=10^3\:\text{m/s}=\:\text{km/s}

Part B

\displaystyle \mu \text{km}=10^{-6}\cdot 10^3\:\text{m}=10^{-3}\:\text{m}=\text{mm}

Part C

\displaystyle \text{ks/mg}=\frac{10^3\:s}{10^{-6}\:\text{kg}}=10^9\:\frac{\text{s}}{\text{kg}}=\text{Gs/kg}

Part D

\displaystyle \text{km} \cdot \mu \text{N}=10^3\:\text{m}\cdot 10^{-6}\:\text{N}\:=10^{-3}\:\text{m}\cdot \text{N}=\text{mm}\cdot \text{N}