Problem 1-2|Stress | Mechanics of Materials| Ninth Edition| R.C. Hibbeler|

Determine the resultant internal normal and shear force in the member at (a) section a–a and (b) section b–b, each of which passes through point A. The 500-lb load is applied along the centroidal axis of the member.

Problem 1-2

Continue reading “Problem 1-2|Stress | Mechanics of Materials| Ninth Edition| R.C. Hibbeler|”

Mechanics of Materials 3rd Edition by Timothy A. Philpot, P1.2


A 2024-T4 aluminum tube with an outside diameter of 2.50 in. will be used to support a 27-kip load. If the axial normal stress in the member must be limited to 18 ksi, determine the wall thickness required for the tube.


Solution:

From the definition of normal stress, solve for the minimum area required to support a 27-kip load without exceeding a stress of 18 ksi

\displaystyle \sigma =\frac{P}{A}

\displaystyle A_{min}=\frac{P}{\sigma }

\displaystyle A_{min}=\frac{27\:kips}{18\:ksi}

\displaystyle A_{min}=1.500\:in.^2

The cross-sectional area of the aluminum tube is given by

\displaystyle A=\frac{\pi }{4}\left(D^2-d^2\right)

Set this expression equal to the minimum area and solve for the maximum inside diameter

\displaystyle \frac{\pi }{4}\left[\left(2.50\:in\right)^2-d^2\right]=1.500\:in^2

\displaystyle \left(2.50\:in\right)^2-d^2=\frac{4}{\pi }\left(1.500\:in^2\right)

\displaystyle \left(2.50\:in\right)^2-\frac{4}{\pi }\left(1.500\:in^2\right)=d^2

\displaystyle d_{max}=2.08330\:in

The outside diameter D, the inside diameter d, and the wall thickness t are related by 

D=d+2t

Therefore, the minimum wall thickness required for the aluminum tube is 

\displaystyle t_{min}=\frac{D-d}{2}

\displaystyle t_{min}=\frac{2.50\:in-2.08330\:in}{2}

\displaystyle t_{min}=0.20835\:in

\displaystyle t_{min}=0.208\:in


Advertisements