Tag Archives: uncertainty in area

Problem 1-27: Calculating the area and its uncertainty of a room with a given dimensional uncertainties

Advertisements
Advertisements

PROBLEM:

The length and width of a rectangular room are measured to be 3.955 ±0.005 m and 3.050 ± 0.005 m . Calculate the area of the room and its uncertainty in square meters.


Advertisements
Advertisements

SOLUTION:

The average area of the room is

A=l×w=3.955m×3.050m=12.06m2  (Answer)\begin{align*} A & =l\times w \\ & =3.955\:\text{m}\times 3.050\:\text{m} \\ & =12.06\:\text{m}^2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \\ \end{align*}

Compute for the percent uncertainties of each dimension.

%uncwidth=0.005m3.050m×100%=0.1639%%unclength=0.005m3.955m×100%=0.1264%\begin{align*} \text{\%\:unc}_{width} & =\frac{0.005\:\text{m}}{3.050\:\text{m}}\times 100\%=0.1639\% \\ \text{\%\:unc}_{length} & =\frac{0.005\:\text{m}}{3.955\:\text{m}}\times 100\%=0.1264\:\% \end{align*}

The percent uncertainty in the area is the combined effect of the uncertainties of the length and width.

%uncarea=0.1639%+0.1264%=0.2903%\text{\%\:unc}_{area}=0.1639\%+0.1264\%=0.2903\%

The uncertainty in the area is

δarea=0.2903%100%×12.06m2=0.035m2  (Answer)\delta _{area}=\frac{0.2903\:\%}{100\:\%}\times 12.06\:\text{m}^2=0.035\:\text{m}^2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

Therefore, the area is

A=12.06±0.035m2  (Answer)A=12.06\pm 0.035\:\text{m}^2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

Advertisements
Advertisements