Tag Archives: uniform circular motion

College Physics by Openstax Chapter 6 Problem 29

The centripetal acceleration of a large centrifuge as experienced in rocket launches and atmospheric reentries of astronauts


Problem:

A large centrifuge, like the one shown in Figure 6.34(a), is used to expose aspiring astronauts to accelerations similar to those experienced in rocket launches and atmospheric reentries.

(a) At what angular velocity is the centripetal acceleration 10g10g if the rider is 15.0 m from the center of rotation?

(b) The rider’s cage hangs on a pivot at the end of the arm, allowing it to swing outward during rotation as shown in Figure 6.34(b). At what angle θ\theta below the horizontal will the cage hang when the centripetal acceleration is  10g10g? (Hint: The arm supplies centripetal force and supports the weight of the cage. Draw a free body diagram of the forces to see what the angle 10g10g should be.)

Figure 6.34 (a) NASA centrifuge used to subject trainees to accelerations similar to those experienced in rocket launches and reentries. (credit: NASA) (b) Rider in cage showing how the cage pivots outward during rotation. This allows the total force exerted on the rider by the cage to always be along its axis.

Solution:

Part A

The centripetal acceleration, aca_c, is calculated using the formula ac=rω2a_c = r \omega ^2. Solving for the angular velocity, ω\omega, in terms of the other variables, we should come up with

ω=acr\omega = \sqrt{\frac{a_c}{r}}

We are given the following values:

  • centripetal acceleration, ac=10g=10(9.81 m/s2)=98.1 m/s2a_c = 10g = 10 \left( 9.81\ \text{m/s}^2 \right) = 98.1\ \text{m/s}^2
  • radius of curvature, r=15.0 mr = 15.0\ \text{m}

Substituting the given values into the equation,

ω=acrω=98.1 m/s215.0 mω=2.5573 rad/secω=2.56 rad/sec  (Answer)\begin{align*} \omega & = \sqrt{\frac{a_c}{r}} \\ \\ \omega & = \sqrt{\frac{98.1\ \text{m/s}^2}{15.0\ \text{m}}} \\ \\ \omega & = 2.5573\ \text{rad/sec} \\ \\ \omega & = 2.56\ \text{rad/sec} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Part B

The free-body diagram of the force is shown

The free-body diagram of the rider’s cage that hangs on a pivot at the end of the arm of a large centrifuge. College Physics Problem 6-29
The free-body diagram of the rider’s cage hangs on a pivot at the end of the arm of a large centrifuge.

Summing forces in the vertical direction, we have

Fy=0Farmsinθw=0Farm=wsinθ Equation 1\begin{align*} \sum_{}^{} F_y & = 0 \\ \\ F_{arm} \sin \theta-w & = 0 \\ \\ F_{arm} & = \frac{w}{\sin \theta} \ \quad \quad \color{Blue} \text{Equation 1} \end{align*}

Now, summing forces in the horizontal direction, taking into account that FcF_c is the centripetal force which is the net force. That is,

Fc=mac\begin{align*} F_c & = m a_c \end{align*}

We know that FcF_c is equal to the horizontal component of the force FarmF_{arm}. That is Fc=FarmcosθF_c = F_{arm} \cos \theta. Therefore,

Farmcosθ=mac\begin{align*} F_{arm} \cos \theta & = m a_c \\ \end{align*}

Now, we can substitute equation 1 into the equation, and the value of the centripetal acceleration given at 10g10g. Also, we note that the weight ww is equal to mgmg. So, we have

Farmcosθ=macwsinθcosθ=m(10g)mgcosθsinθ=10mg\begin{align*} F_{arm} \cos \theta & = m a_c \\ \\ \frac{w}{\sin \theta} \cos \theta & = m (10g) \\ \\ \frac{mg \cos \theta}{\sin \theta} & = 10 mg \\ \\ \end{align*}

From here, we are going to use the trigonometric identity tanθ=sinθcosθ\displaystyle \tan \theta = \frac{\sin \theta}{\cos \theta}. We can also cancel mm, and g since they can be found on both sides of the equation.

1tanθ=10tanθ=110θ=tan1(110)θ=5.71  (Answer)\begin{align*} \frac{1}{\tan \theta} & = 10 \\ \\ \tan \theta & = \frac{1}{10} \\ \\ \theta & = \tan ^{-1} \left( \frac{1}{10} \right) \\ \\ \theta & = 5.71 ^\circ \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

College Physics by Openstax Chapter 6 Problem 28

Riding a Bicycle in an Ideally Banked Curve


Problem:

Part of riding a bicycle involves leaning at the correct angle when making a turn, as seen in Figure 6.33. To be stable, the force exerted by the ground must be on a line going through the center of gravity. The force on the bicycle wheel can be resolved into two perpendicular components—friction parallel to the road (this must supply the centripetal force), and the vertical normal force (which must equal the system’s weight).

(a) Show that θ\theta (as defined in the figure) is related to the speed vv and radius of curvature rr of the turn in the same way as for an ideally banked roadway—that is, θ=tan1(v2/rg)\theta = \tan ^{-1} \left( v^2/rg \right)

(b) Calculate θ\theta for a 12.0 m/s turn of radius 30.0 m (as in a race).

Figure 6.33 A bicyclist negotiating a turn on level ground must lean at the correct angle—the ability to do this becomes instinctive. The force of the ground on the wheel needs to be on a line through the center of gravity. The net external force on the system is the centripetal force. The vertical component of the force on the wheel cancels the weight of the system, while its horizontal component must supply the centripetal force. This process produces a relationship among the angle θ, the speed v, and the radius of curvature r of the turn similar to that for the ideal banking of roadways.

Solution:

Part A

Let us redraw the given forces in a free-body diagram with their corresponding components.

The force NN and FcF_c are the vertical and horizontal components of the force FF.

If we take the equilibrium of forces in the vertical direction (since there is no motion in the vertical direction) and solve for FF, we have

Fy=0Fcosθmg=0Fcosθ=mgF=mgcosθEquation 1\begin{align*} \sum F_y & = 0 \\ \\ F \cos \theta - mg & = 0 \\ \\ F \cos \theta & = mg \\ \\ F & = \frac{mg}{\cos \theta} \quad \quad & \color{Blue} \small \text{Equation 1} \end{align*}

If we take the sum of forces in the horizontal direction and equate it to mass times the centripetal acceleration (since the centripetal acceleration is directed in this direction), we have

Fx=macFsinθ=macFsinθ=mv2rEquation 2\begin{align*} \sum F_x & = ma_c \\ \\ F \sin \theta & = m a_c \\ \\ F \sin \theta & = m \frac{v^2}{r} \quad \quad & \color{Blue} \small \text{Equation 2} \end{align*}

We substitute Equation 1 to Equation 2.

Fsinθ=mv2rmgcosθsinθ=mv2rmgsinθcosθ=mv2r\begin{align*} F \sin \theta & = m \frac{v^2}{r} \\ \\ \frac{mg}{\cos \theta} \sin \theta & = m \frac{v^2}{r} \\ \\ mg \frac{\sin \theta}{\cos \theta} & =m \frac{v^2}{r} \\ \\ \end{align*}

We can cancel mm from both sides, and we can apply the trigonometric identity tanθ=sinθcosθ\displaystyle \tan \theta = \frac{\sin \theta}{\cos \theta}. We should come up with

gtanθ=v2rtanθ=v2rgθ=tan1(v2rg)  (Answer)\begin{align*} g \tan \theta & = \frac{v^2}{r} \\ \\ \tan \theta & = \frac{v^2}{rg} \\ \\ \theta & = \tan ^ {-1} \left( \frac{v^2}{rg} \right) \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Part B

We are given the following values:

  • linear velocity, v=12.0 m/sv = 12.0\ \text{m/s}
  • radius of curvature, r=30.0 mr=30.0\ \text{m}
  • acceleration due to gravity, g=9.81 m/s2g = 9.81\ \text{m/s}^2

We substitute the given values to the formula of θ\theta we solve in Part A.

θ=tan1(v2rg)θ=tan1[(12.0 m/s)2(30.0 m)(9.81 m/s2)]θ=26.0723θ=26.1  (Answer)\begin{align*} \theta & = \tan ^ {-1} \left( \frac{v^2}{rg} \right) \\ \\ \theta & = \tan ^ {-1} \left[ \frac{\left( 12.0\ \text{m/s} \right)^2}{\left( 30.0\ \text{m} \right)\left( 9.81\ \text{m/s}^2 \right)} \right] \\ \\ \theta & = 26.0723 ^\circ \\ \\ \theta & = 26.1 ^\circ \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

College Physics by Openstax Chapter 6 Problem 27

The radius and centripetal acceleration of a bobsled turn on an ideally banked curve


Problem:

(a) What is the radius of a bobsled turn banked at 75.0° and taken at 30.0 m/s, assuming it is ideally banked?

(b) Calculate the centripetal acceleration.

(c) Does this acceleration seem large to you?


Solution:

Part A

For ideally banked curved, the ideal banking angle is given by the formula tanθ=v2rg\displaystyle \tan \theta = \frac{v^2}{rg}. We can solve for rr in terms of all the other variables, and we should come up with

r=v2gtanθr = \frac{v^2}{g \tan \theta}

We are given the following values:

  • ideal banking angle, θ=75.0 \displaystyle \theta = 75.0\ ^\circ
  • linear speed, v=30.0 m/s\displaystyle v=30.0\ \text{m/s}
  • acceleration due to gravity, g=9.81 m/s2\displaystyle g=9.81\ \text{m/s}^2

If we substitute all the given values into our formula for rr, we have

r=v2gtanθr=(30.0 m/s)2(9.81 m/s2)(tan75)r=24.5825 mr=24.6 m  (Answer)\begin{align*} r & = \frac{v^2}{g \tan \theta} \\ \\ r & = \frac{\left( 30.0\ \text{m/s} \right)^2}{\left( 9.81\ \text{m/s}^2 \right)\left( \tan 75^\circ \right)} \\ \\ r & = 24.5825\ \text{m} \\ \\ r & = 24.6\ \text{m} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

The radius of the ideally banked curve is approximately 24.6 m24.6\ \text{m}.

Part B

The centripetal acceleration aca_c can be solved using the formula

ac=v2ra_c = \frac{v^2}{r}

Substituting the given values, we have

ac=v2rac=(30.0 m/s)224.5825 mac=36.6114 m/s2ac=36.6 m/s2  (Answer)\begin{align*} a_c & = \frac{v^2}{r} \\ \\ a_c & = \frac{\left( 30.0\ \text{m/s} \right)^2}{24.5825\ \text{m}} \\ \\ a_c & = 36.6114\ \text{m/s}^2 \\ \\ a_c & = 36.6 \ \text{m/s}^2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

The centripetal acceleration is about 36.6 m/s236.6\ \text{m/s}^2.

Part C

To know how large is the computed centripetal acceleration, we can compare it with that of acceleration due to gravity.

acg=36.6114 m/s29.81 m/s2=3.73\frac{a_c}{g} = \frac{36.6114\ \text{m/s}^2}{9.81\ \text{m/s}^2} = 3.73

The computed centripetal acceleration is 3.73 times the acceleration due to gravity. That is ac=3.73ga_c = 3.73g.

This does not seem too large, but it is clear that bobsledders feel a lot of force on
them going through sharply banked turns!


Advertisements
Advertisements

College Physics by Openstax Chapter 6 Problem 26

The Ideal Speed on a Banked Curve


Problem:

What is the ideal speed to take a 100 m radius curve banked at a 20.0° angle?


Solution:

The formula for the ideal speed on a banked curve can be derived from the formula of the ideal angle. That is, starting from tanθ=v2rg\tan \theta = \frac{v^2}{rg}, we can solve for vv.

v=rgtanθv = \sqrt{rg \tan \theta}

For this problem, we are given the following values:

  • radius of curvature, r=100 mr=100\ \text{m}
  • acceleration due to gravity, g=9.81 m/s2g=9.81\ \text{m/s}^2
  • banking angle, θ=20.0\theta = 20.0 ^\circ

If we substitute the given values into our formula, we have

v=rgtanθv=(100 m)(9.81 m/s2)(tan20.0)v=18.8959 m/sv=18.9 m/s  (Answer)\begin{align*} v = & \sqrt{rg \tan \theta} \\ \\ v = & \sqrt{\left( 100\ \text{m} \right)\left( 9.81\ \text{m/s}^2 \right) \left( \tan 20.0 ^\circ \right) } \\ \\ v = & 18.8959\ \text{m/s} \\ \\ v = & 18.9\ \text{m/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

The ideal speed for the given banked curve is about 18.9 m/s18.9\ \text{m/s}.


Advertisements
Advertisements

College Physics by Openstax Chapter 6 Problem 25

The ideal banking angle of a curve on a highway


Problem:

What is the ideal banking angle for a gentle turn of 1.20 km radius on a highway with a 105 km/h speed limit (about 65 mi/h), assuming everyone travels at the limit?


Solution:

The ideal banking angle (meaning there is no involved friction) of a car on a curve is given by the formula:

θ=tan1(v2rg)\theta = \tan^{-1} \left( \frac{v^2}{rg} \right)

We are given the following values:

  • radius of curvature, r=1.20 km×1000 m1 km=1200 m\displaystyle r = 1.20\ \text{km} \times \frac{1000\ \text{m}}{1\ \text{km}} = 1200\ \text{m}
  • linear velocity, v=105 km/h×1000 m1 km×1 h3600 s=29.1667 m/s\displaystyle v=105\ \text{km/h}\times \frac{1000\ \text{m}}{1\ \text{km}} \times \frac{1\ \text{h}}{3600\ \text{s}} = 29.1667\ \text{m/s}
  • acceleration due to gravity, g=9.81 m/s2\displaystyle g = 9.81\ \text{m/s}^2

If we substitute these values into our formula, we come up with

θ=tan1(v2rg)θ=tan1[(29.1667 m/s)2(1200 m)(9.81 m/s2)]θ=4.1333θ=4.13  (Answer)\begin{align*} \theta & = \tan^{-1} \left( \frac{v^2}{rg} \right) \\ \\ \theta & = \tan^{-1} \left[ \frac{\left( 29.1667\ \text{m/s} \right)^2}{\left( 1200\ \text{m} \right)\left( 9.81\ \text{m/s}^2 \right)} \right] \\ \\ \theta & = 4.1333 ^\circ \\ \\ \theta & = 4.13 ^\circ \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

The ideal banking angle for the given highway is about 4.13 4.13 ^\circ.


Advertisements
Advertisements

College Physics by Openstax Chapter 6 Problem 24

Centripetal Force of a Rotating Wind Turbine Blade


Problem:

Calculate the centripetal force on the end of a 100 m (radius) wind turbine blade that is rotating at 0.5 rev/s. Assume the mass is 4 kg.


Solution:

We are given the following values:

  • radius, r=100 mr=100\ \text{m}
  • angular velocity, ω=0.5 rev/sec×2π rad1 rev=3.1416 rad/sec\omega = 0.5\ \text{rev/sec}\times \frac{2\pi \ \text{rad}}{1\ \text{rev}} = 3.1416\ \text{rad/sec}
  • mass, m=4 kgm=4\ \text{kg}

Centripetal force FcF_c is any force causing uniform circular motion. It is a “center-seeking” force that always points toward the center of rotation. It is perpendicular to linear velocity vv and has magnitude Fc=macF_c = m a_c which can also be expressed as

Fc=mv2ror Fc=mrω2F_c = m \frac{v^2}{r} \quad \text{or} \quad \ F_c = mr \omega^2

For this particular problem, we are going to use the formula Fc=mrω2F_c = mr \omega^2. If we substitute the given values, we have

Fc=mrω2Fc=(4 kg)(100 m)(3.1416 rad/sec)2Fc=3947.8602 NFc=4×103 N  (Answer)\begin{align*} F_c & =mr \omega^2 \\ \\ F_c & = \left( 4\ \text{kg} \right)\left( 100\ \text{m} \right)\left( 3.1416\ \text{rad/sec} \right)^2 \\ \\ F_c & = 3947.8602\ \text{N} \\ \\ F_c & = 4 \times 10^3\ \text{N}\ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

The centripetal force on the end of the wind turbine blade is approximately 4×103 N4 \times 10^3\ \text{N}.


Advertisements
Advertisements

Problem 6-20: The centripetal acceleration of the commercial jet’s tires, and the force of a determined bacterium in it


At takeoff, a commercial jet has a 60.0 m/s speed. Its tires have a diameter of 0.850 m.

(a) At how many rev/min are the tires rotating?

(b) What is the centripetal acceleration at the edge of the tire?

(c) With what force must a determined 1.00×10−15 kg bacterium cling to the rim?

(d) Take the ratio of this force to the bacterium’s weight.


Solution:

We are given the following quantities: linear speed, v=60.0 m/s v=60.0 \ \text{m/s}, radius is half the diameter, r=0.425 m r=0.425 \ \text{m}.

Part A

We can compute the angular velocity based on the given using the formula, ω=vr \displaystyle \omega = \frac{v}{r}.

ω=vrω=60.0 m/s0.425 mω=141.1765 rad/sec\begin{align*} \omega & = \frac{v}{r} \\ \\ \omega & = \frac{60.0 \ \text{m/s}}{0.425 \ \text{m}} \\ \\ \omega & = 141.1765 \ \text{rad/sec} \end{align*}

Now, we can convert this into the required unit of rev/min.

ω=141.1765 radsec×1 rev2π rad×60 sec1 minω=1348.1363 rev/minω=1.35×103 rev/min  (Answer)\begin{align*} \omega & = 141.1765\ \frac{\text{rad}}{\text{sec}} \times \frac{1\ \text{rev}}{2\pi\ \text{rad}} \times \frac{60\ \text{sec}}{1\ \text{min}} \\ \\ \omega & = 1348.1363 \ \text{rev/min} \\ \\ \omega & = 1.35 \times 10^{3} \ \text{rev/min} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Part B

The centripetal acceleration at the edge of the tire can be computed using the formula, ac=rω2 a_{c} = r \omega ^{2}.

ac=rω2ac=(0.425 m)(141.1765 rad/sec)2ac=8470.5918 m/s2ac=8.47×103 m/s2  (Answer)\begin{align*} a_{c} & = r \omega ^2 \\ \\ a_{c} & = \left( 0.425\ \text{m} \right) \left(141.1765\ \text{rad/sec} \right)^2 \\ \\ a_{c} & = 8470.5918 \ \text{m/s}^2 \\ \\ a_{c} & = 8.47 \times 10 ^{3} \ \text{m/s}^2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Part C

From the second law of motion, the force is equal to the product of the mass and the acceleration. In this case, we are going to use the formula, Fc=mac F_c = m a_c . We are given the mass to be m=1.00×1015 kgm=1.00 \times 10 ^{-15}\ \text{kg} , and the centripetal acceleration is solved in Part B.

Fc=macFc=(1×1015 kg)(8470.5918 m/s2)Fc=8.4705918×1012 kg m/s2Fc=8.47×1012 N  (Answer)\begin{align*} F_c & = ma_c \\ \\ F_c & = \left( 1 \times 10^{-15}\ \text{kg}\right) \left(8470.5918 \ \text{m/s}^2\right) \\ \\ F_c & = 8.4705918 \times 10 ^{-12}\ \text{kg m/s}^2 \\ \\ F_c & = 8.47 \times 10^{-12} \ \text{N} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Part D

The ratio of this force, Fc F_c to the weight of the bacterium is

Fcmg=8.4705819×1012 N(1×1015kg)(9.81 m/s2)Fcmg=863.4640Fcmg=863  (Answer)\begin{align*} \frac{F_c}{mg} & = \frac{8.4705819 \times 10 ^{-12}\ \text{N}}{\left( 1 \times 10^{-15} \text{kg} \right)\left(9.81 \ \text{m/s}^2 \right)} \\ \\ \frac{F_c}{mg} & = 863.4640 \\ \\ \frac{F_c}{mg} & = 863 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Problem 6-14: The centripetal acceleration and a linear speed of a point on an edge of an ordinary workshop grindstone


An ordinary workshop grindstone has a radius of 7.50 cm and rotates at 6500 rev/min.

(a) Calculate the magnitude of the centripetal acceleration at its edge in meters per second squared and convert it to multiples of g.

(b) What is the linear speed of a point on its edge?


Solution:

We are given the following values: r=7.50 cmr=7.50\ \text{cm}, and ω=6500 rev/min\omega = 6500\ \text{rev/min} . We need to convert these values into appropriate units so that we can come up with sensical units when we solve for the centripetal acceleration.

r=7.50 cm=0.075 mr = 7.50 \ \text{cm} = 0.075 \ \text{m}
ω=6500 rev/min×2π rad1 rev×1 min60 sec=680.6784 rad/sec\omega = 6500 \ \text{rev/min} \times\frac{2\pi \ \text{rad}}{1\ \text{rev}} \times \frac{1 \ \text{min}}{60\ \text{sec}} = 680.6784 \ \text{rad/sec}

Part A

We are asked to solve for the centripetal acceleration aca_{c}. Basing on the given data, we are going to use the formula

ac=rω2a_{c} = r \omega ^{2}

Substituting the given values, we have

ac=rω2ac=(0.075 m)(680.6784 rad/sec)2ac=34749.2313 m/s2ac=3.47×104 m/s2  (Answer)\begin{align*} a_{c} & = r \omega ^2 \\ \\ a_{c} & = \left( 0.075 \ \text{m} \right) \left( 680.6784 \ \text{rad/sec} \right)^2 \\ \\ a_{c} & = 34749.2313 \ \text{m/s}^2 \\ \\ a_{c} & = 3.47 \times 10^{4} \ \text{m/s} ^2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Now, we can convert the centripetal acceleration in multiples of g.

ac=34749.2313 m/s2×g9.81 m/s2ac=3542.2254gac=3.54×103g  (Answer)\begin{align*} a_{c} & = 34749.2313 \ \text{m/s}^2 \times \frac{g}{9.81 \ \text{m/s}^2}\\ \\ a_{c} & =3542.2254g \\ \\ a_{c} & = 3.54\times 10^3 g \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Part B

We are then asked for the linear speed, vv of the point on the edge. So, we can use the given values to find the linear speed. We are going to use the formula

v=rωv=r\omega

If we substitute the given values, we have

v=rωv=(0.075 m)(680.6784 rad/sec)  v=51.0509 m/sv=51.1 m/s  (Answer)\begin{align*} v & = r \omega \\ \\ v & = \left( 0.075 \ \text{m} \right)\left( 680.6784\ \text{rad/sec} \right) \ \ \\ \\ v & = 51.0509 \ \text{m/s} \\ \\ v & = 51.1 \ \text{m/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Problem 6-12: The approximate total distance traveled by planet Earth since its birth


Taking the age of Earth to be about 4×109 years and assuming its orbital radius of 1.5 ×1011 m has not changed and is circular, calculate the approximate total distance Earth has traveled since its birth (in a frame of reference stationary with respect to the Sun).


Solution:

First, we need to compute for the linear velocity of the Earth using the formula below knowing that the Earth has 1 full revolution in 1 year

v=rωv=r\omega

where r=1.5×1011 mr=1.5\times 10^{11} \ \text{m} and ω=2π rad/year\omega = 2\pi \ \text{rad/year} . Substituting these values, we have

v=rωv=(1.5×1011 m)(2π rad/year)v=9.4248×1011 m/year\begin{align*} v & = r \omega \\ \\ v & = \left( 1.5\times 10^{11} \ \text{m} \right)\left( 2 \pi \ \text{rad/year} \right) \\ \\ v & = 9.4248\times 10^{11} \ \text{m/year} \end{align*}

Knowing the linear velocity, we can compute for the total distance using the formula

Δx=vΔt\Delta x = v \Delta t

We can now substitute the given values: v=9.4248×1011 m/yearv = 9.4248\times 10^{11} \ \text{m/year} and Δt=4×109 years\Delta t = 4\times 10^{9} \ \text{years} .

Δx=vΔtΔx=(9.4248×1011 m/year)(4×109 years)Δx=3.7699×1021 mΔx=4×1021 m  (Answer)\begin{align*} \Delta x & = v \Delta t \\ \\ \Delta x & = \left( 9.4248\times 10^{11} \ \text{m/year} \right) \left( 4\times 10^{9} \ \text{years} \right) \\ \\ \Delta x & = 3.7699 \times 10^{21} \ \text{m} \\ \\ \Delta x & = 4 \times 10^{21} \ \text{m} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Problem 6-10: The angular velocity of a person in a circular fairground ride


A fairground ride spins its occupants inside a flying saucer-shaped container. If the horizontal circular path the riders follow has an 8.00 m radius, at how many revolutions per minute will the riders be subjected to a centripetal acceleration whose magnitude is 1.50 times that due to gravity?


Solution:

Centripetal acceleration aca_{c} is the acceleration experienced while in uniform circular motion. It always points toward the center of rotation. The relationship between the centripetal acceleration aca_{c} and the angular velocity ω\omega is given by the formula

ac=rω2a_{c}=r\omega^{2}

Now, taking the formula and solving for the angular velocity:

ω=acr\omega = \sqrt{\frac{a_{c}}{r}}

From the given problem, we are given the following values: r=8.00 mr=8.00\ \text{m} and ac=1.50×9.81 m/s2=14.715 m/s2a_{c}=1.50\times 9.81 \ \text{m/s}^2=14.715\ \text{m/s}^2. If we substitute these values in the formula, we can solve for the angular velocity.

ω=acrω=14.715 m/s28.00 mω=1.3561 rad/sec\begin{align*} \omega & = \sqrt{\frac{a_{c}}{r}} \\ \\ \omega & = \sqrt{\frac{14.715\ \text{m/s}^2}{8.00\ \text{m}}} \\ \\ \omega & = 1.3561\ \text{rad/sec} \\ \\ \end{align*}

Then, we can convert this value into its corresponding value at the unit of revolutions per minute.

ω=1.3561 radsec×60 sec1 min×1 rev2π radω=12.9498 rev/minω=13.0 rev/min  (Answer)\begin{align*} \omega & = 1.3561\ \frac{\text{rad}}{\text{sec}} \times \frac{60\ \text{sec}}{1\ \text{min}}\times \frac{1\ \text{rev}}{2\pi \ \text{rad}} \\ \\ \omega & = 12.9498\ \text{rev/min} \\ \\ \omega & = 13.0 \ \text{rev/min} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements