Tag Archives: university physics

Purchase Complete Solution Manual of University Physics with Modern Physics 15th Edition by Young and Freedman


You can complete your purchase even if you do not have a Paypal account. Just click on the appropriate card on the buttons below.

For concerns, please send an email to [email protected]

University Physics with Modern Physics 15th Edition Complete Solution Guides

University Physics with Modern Physics 15th Edition by Young and Freedman Complete Solution Guides

This is a PDF copy of the complete guide to the problems and exercises of the book University Physics with Modern Physics 15th Edition by Young and Freedman. Expect the copy to be sent to your email address within 24 hours. If you have not heard from us within 24 hours, kindly send us a message to [email protected]

$49.00


Looking for another material? Kindly send us an email and we will get back to you within 24 hours.


Skidding on a Curve: Unbanked Curves – Uniform Circular Motion Example Problem

A 1000-kg car rounds a curve on a flat road of radius 50 m at a speed of 15 m/s Will the car follow the curve, or will it skid? Assume: (a) the pavement is dry and the coefficient of static friction is \mu _s=0.60; (b) the pavement is icy and \mu _s=0.25.


Solution:

The forces on the car are gravity mg downward, the normal force FN exerted upward by the road, and a horizontal friction force due to the road. They are shown in the free-body diagram of the car below. The car will follow the curve if the maximum static friction force is greater than the mass times the centripetal acceleration.

Part A

In the vertical direction (y) there is no acceleration. Newton’s second law tells us that the normal force on the car is equal to the weight mg since the road is flat:

\begin{align*}
\sum_{}^{}F_y & =m\ a_c\\
\\
F_N\ -\ mg & =0\\
\\
F_N&=mg\\
\\
F_N &=\left( 1000\ \text{kg} \right)\left( 9.81\ \text{m/s}^2 \right)\\
\\
F_N &=9810\  \text{N}
\end{align*}

In the horizontal direction the only force is friction, and we must compare it to the force needed to produce the centripetal acceleration to see if it is sufficient. The net horizontal force required to keep the car moving in a circle around the curve is

\begin{align*}
\sum_{}^{}F_c & =m\ a_c\\
\\
 & =m\cdot \frac{v^2}{r}\\
\\
& =\left( 1000\ \text{kg} \right)\cdot \frac{\left( 15\ \text{m/s} \right)^2}{50\ \text{m}}\\
\\
&=4500\ \text{N}
\end{align*}

Now we compute the maximum total static friction force (the sum of the friction forces acting on each of the four tires) to see if it can be large enough to provide a safe centripetal acceleration. For (a), \mu _s=0.60, and the maximum friction force attainable is

\begin{align*}
\sum_{}^{}F_{fr_{max}}& =\mu _s \ F_N\\
\\
&=\left( 0.60 \right)\left( 9810\ \text{N} \right)\\
\\
&=5886\ \text{N}
\end{align*}

Since a force of only 4500 N is needed, and that is, in fact, how much will be exerted by the road as a static friction force, the car can follow the curve.

Part B

The maximum static friction force possible is

\begin{align*}
\sum_{}^{}F_{fr_{max}}& =\mu _s \ F_N\\
\\
&=\left( 0.25 \right)\left( 9810\ \text{N} \right)\\
\\
&=2452.5\ \text{N}
\end{align*}

The car will skid because the ground cannot exert sufficient force (4500 N is needed) to keep it moving in a curve of radius 50 m at a speed of 54 km/h.


Acceleration of a Revolving Ball – Uniform Circular Motion Example

A 150-g ball at the end of a string is revolving uniformly in a horizontal circle of radius 0.600 m, as in the Figure 1 below. The ball makes 2.00 revolutions in a second. What is its centripetal acceleration?

Figure 1: A small object moving in a circle, showing how the velocity changes. At each point, the instantaneous velocity is in a direction tangent to the circular path.

Solution:

The linear velocity of the ball can be computed by dividing the total arc length traveled by the total time of travel. That is, the ball traveled 2 revolutions (twice the circumference of the circle) for 1 second. Thus,

\begin{align*}
\text{v} &= \frac{2\cdot2 \pi \text{r}}{\text{t}} \\
\\
& = \frac{4\pi \text{r}}{\text{t}} \\
\\
& = \frac{4\pi\left( 0.600\ \text{m} \right)}{1 \ \text{s}} \\
\\
& = 7.54 \ \text{m/s}
\end{align*}

Since the linear velocity has already been computed, we can now compute for the centripetal acceleration, ac.

\begin{align*}
\text{a}_\text{c} & = \frac{\text{v}^{2}}{\text{r}} \\
\\
& = \frac{\left( 7.54\ \text{m/s} \right)^{2}}{0.600\ \text{m}}\\
\\
& =94.8 \ \text{m/s}^{2}
\end{align*}

Grantham PHY220 Week 2 Assignment Problem 8

If a car is traveling at 50 m/s and then stops over 300 meters (while sliding), what is the coefficient of kinetic friction between the tires of the car and the road?

SOLUTION:

Draw the free-body diagram of the car

week 2 problem 8

Consider the vertical direction

\sum F_y=ma_y

F_N-mg=0

F_N=mg

Consider the motion in the horizontal direction

Solve for the acceleration of the car.

v^2=\left(v_0\right)^2+2a_x\Delta x

a_x=\frac{v^2-\left(v_0\right)^2}{2\Delta x}=\frac{0-50^2}{2\left(300\right)}=-4.17\:m/s^2

Solve for the coefficient of kinetic friction

\sum F_x=ma_x

-F_{fr}=ma_x

-\mu _kF_N=ma_x

\mu _k=\frac{ma_x}{-F_N}=\frac{m\:\left(-4.17\right)}{-m\left(9.80\right)}=\frac{4.17}{9.80}

\mu _k=0.43