Tag Archives: Work and Energy

College Physics by Openstax Chapter 7 Problem 2


A 75.0-kg person climbs stairs, gaining 2.50 meters in height. Find the work done to accomplish this task. (Neglect friction in your calculations.)


Solution:

Work done against gravity in lifting an object becomes potential energy of the object-Earth system. The change in gravitational potential energy is \Delta PE_{g} = mgh, with h being the increase in height and g the acceleration due to gravity.

W=mgh

We are given the following values: m=75.0\ \text{kg}, g=9.80\ \text{m/s}^2, and h=2.50\ \text{m}.

Substitute the given in the formula.

\begin{align*}
W & = mgh \\
W & = \left( 75.0\ \text{kg} \right)\left( 9.80\ \text{m/s}^2 \right)\left( 2.50\ \text{m} \right)\\
W & = 1837.5\ \text{Nm} \\
W & = 1837.5\ \text{J} \\
W & = 1.84 \times 10 ^{3} \ \text{J} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

The work done is about 1.84 \times 10 ^ {3}\ \text{Joules} .


College Physics by Openstax Chapter 7 Problem 1


How much work does a supermarket checkout attendant do on a can of soup he pushes 0.600 m horizontally with a force of 5.00 N? Express your answer in joules and kilocalories.


Solution:

The work W that a force F does on an object is the product of the magnitude F of the force, times the magnitude d of the displacement, times the cosine of the angle \theta between them. In symbols,

W=Fd \cos \theta

We are given the following values: F=5.00\ \text{N}, d=0.600\ \text{m}, and \theta=0^\circ.

Substitute the given values in the formula for work.

\begin{align*}
W & = Fd \cos \theta \\
W & = \left( 5.00\ \text{N} \right)\left( 0.600\ \text{m} \right) \cos 0^\circ \\
W & = 3.00\ \text{Nm} \\
W & = 3.00\ \text{J} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

The work done is 3.00 Joules. Now, we can convert this in unit of kilocalories knowing that 1\ \text{kcal} = 4186\ \text{J}.

\begin{align*}
W & = 3.00\ \text{J} \\
W & = 3.00\ \text{J}\ \times \ \frac{1\ \text{kcal}}{4186\ \text{J}} \\
W & = 0.000717\ \text{kcal} \\
W & = 7.17 \times 10 ^{-4} \ \text{kcal} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

The work done in kilocalories is about 7.17 \times 10 ^{-4}.


Solution Guides to College Physics by Openstax Chapter 10 Banner

Chapter 10: Rotational Motion and Angular Momentum

Angular Acceleration

Problem 1

Problem 2

Problem 3

Problem 4

Kinematics of Rotational Motion

Problem 5

Problem 6

Problem 7

Problem 8

Problem 9

Dynamics of Rotational Motion: Rotational Inertia

Problem 10

Problem 11

Problem 12

Problem 13

Problem 14

Problem 15

Problem 16

Problem 17

Problem 18

Problem 19

Problem 20

Rotational Kinetic Energy: Work and Energy Revisited

Problem 21

Problem 22

Problem 23

Problem 24

Problem 25

Problem 26

Problem 27

Problem 28

Problem 29

Problem 30

Problem 31

Problem 32

Problem 33

Problem 34

Problem 35

Angular Momentum and Its Conservation

Problem 36

Problem 37

Problem 38

Problem 39

Problem 40

Problem 41

Problem 42

Collisions of Extended Bodies in Two Dimensions

Problem 43

Problem 44

Problem 45

Problem 46

Problem 47

Gyroscopic Effects: Vector Aspects of Angular Momentum

Problem 48