Category Archives: Engineering Mathematics Blog

College Physics by Openstax Chapter 5 Problem 1

A physics major is cooking breakfast when he notices that the frictional force between his steel spatula and his Teflon frying pan is only 0.200 N. Knowing the coefficient of kinetic friction between the two materials, he quickly calculates the normal force. What is it?


Solution:

The formula for friction is

f=\mu _{k\:}N

When we solve for the normal force, N, in terms of the other variables, we have

N=\frac{f}{\mu _k}

The coefficient of kinetic friction is 0.04. Therefore, the normal force is

\begin{align*}
N & =\frac{f}{\mu _k} \\
N & =\frac{0.200\:\text{newton}}{0.04} \\
N & =5.00\:\text{newton} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements

College Physics by Openstax Chapter 4 Problem 1


A 63.0-kg sprinter starts a race with an acceleration of 4.20 m/s2. What is the net external force on him?


Solution:

So, we are given mass, m = 63.0 \ \text{kg} , and acceleration, a = 4.20 \ \text{m/s}^2.

The net force has a formula 

\text{F}=\text{m}a

Substituting the given values, we have

\begin{align*}
F & = \left( 63.0 \ \text{kg} \right)\left( 4.20 \ \text{m/s}^2 \right) \\
F & = 265 \  \text{kg}\cdot \text{m/s}^2 \\
F & = 265 \ \text{N} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}
\end{align*}

Advertisements
Advertisements

College Physics by Openstax Chapter 3 Problem 1


Find the following for path A in Figure 3.52:
(a) The total distance traveled, and
(b) The magnitude and direction of the displacement from start to finish.

Figure 3.54 The various lines represent paths taken by different people walking in a city. All blocks are 120 m on a side
Figure 3.52 The various lines represent paths taken by different people walking in a city. All blocks are 120 m on a side


Solution:

Part A

The total distance traveled is 

\begin{align*}

\text{d} & =\left(3\times 120\ \text{m}\right)+\left(1\times 120\:\text{m}\right) \\
\text{d} & =480\:\text{m}  \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}\\

\end{align*}

Part B

The magnitude of the displacement is 

\begin{align*}

\text{s }& =\sqrt{\left( s_x \right)^{2\:}+\left( s_y \right)^2} \\
\text{s }& = \sqrt{\left(1\times 120\:\text{m}\right)^2+\left(3\times 120\:\text{m}\right)^2} \\
\text{s }& = 379\ \text{m} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}

\end{align*}

The direction is

\begin{align*}

 \theta & = \tan^{-1}\left(\frac{s_x}{s_y}\right) \\
\theta & = \tan^{-1}\left(\frac{1\times 120\:\text{m}}{3\times 120 \ \text{m}}\right) \\
\theta & =71.6^{\circ} ,\:\text{E of N} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}

\end{align*}

Advertisements
Advertisements