Tag Archives: Approximation

Solution Guide to College Physics by Openstax Chapter 1 Banner

Chapter 1: Introduction: The Nature of Science and Physics

Advertisements

Physical Quantities and Units

Advertisements

Accuracy, Precision, and Significant Figures

Advertisements

Approximation


Advertisements
Advertisements

Problem 1-36: The maximum firing rate of a nerve

Advertisements
Advertisements

PROBLEM:

Assuming one nerve impulse must end before another can begin, what is the maximum firing rate of a nerve in impulses per second?


Advertisements
Advertisements

Solution:

One nerve impulse lasts for 10-3 s.

max firing rate=1nerve impulse103sec=103impulses/sec  (Answer)\text{max firing rate}=\frac{1\:\text{nerve impulse}}{10^{-3}\:\text{sec}}=10^3\:\text{impulses/sec} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

Advertisements
Advertisements

Problem 1-35: The approximate number of cells in a hummingbird and in a human

Advertisements
Advertisements

PROBLEM:

(a) Calculate the number of cells in a hummingbird assuming the mass of an average cell is ten times the mass of a bacterium.

(b) Making the same assumption, how many cells are there in a human?


Advertisements
Advertisements

SOLUTION:

Part A

The mass of a hummingbird is 10-2 kg, while the mass of a cell is 10-15 kg. The number of cells in the hummingbird is

10210(1015)=1012cells  (Answer)\frac{10^{-2}}{10\left(10^{-15}\right)}=10^{12}\:\text{cells} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

Part B

The mass of a person is 102 kg.

10210(1015)=1016cells  (Answer)\frac{10^2}{10\left(10^{-15}\right)}=10^{16}\:\text{cells}\ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

Advertisements
Advertisements

Problem 1-34: Earth’s diameter vs greatest ocean depth and vs greatest mountain height

Advertisements
Advertisements

PROBLEM:

(a) What fraction of Earth’s diameter is the greatest ocean depth?

(b) The greatest mountain height?


Advertisements
Advertisements

SOLUTION:

Part A

The greatest ocean depth is 104 m, while the earth’s diameter is 107 m

Ocean’s DepthEarth’s Diameter=104107=11000  (Answer)\frac{\text{Ocean's Depth}}{\text{Earth's Diameter}}= \frac{10^4}{10^7}=\frac{1}{1000}\ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

Part B

The highest mountain is also roughly 104 m.

104107=11000  (Answer)\displaystyle \frac{10^4}{10^7}=\frac{1}{1000}\ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

Advertisements
Advertisements

Problem 1-33: The number of atoms thick of a cell membrane

Advertisements
Advertisements

PROBLEM:

Approximately how many atoms thick is a cell membrane, assuming all atoms there average about twice the size of a hydrogen atom?


Advertisements
Advertisements

SOLUTION:

The cell membrane is 10-8 m while the hydrogen atom is 10-10  m. The number of atoms in the cell membrane is

no. of atoms=dm2dH=1082(1010)=50atoms  (Answer)\begin{align*} \text{no. of atoms} & =\frac{\text{d}_{\text{m}}}{2\text{d}_{\text{H}}}\\ \\ & =\frac{10^{-8}}{2\left(10^{-10}\right)} \\ \\ & =50\:\text{atoms} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Problem 1-32: The approximate number of atoms in a bacterium

Advertisements
Advertisements

PROBLEM:

Calculate the approximate number of atoms in a bacterium. Assume that the average mass of an atom in the bacterium is ten times the mass of a hydrogen atom. (Hint: The mass of a hydrogen atom is on the order of 10-27 kg; and the mass of a bacterium is on the order of 10-15 kg)


Advertisements
Advertisements

SOLUTION:

The number of atoms is

no. of atoms=mbact10mH=101510(1027)=1011atoms  (Answer)\begin{align*} \text{no. of atoms} & =\frac{m_{bact}}{10\:m_H} \\ \\ & = \frac{10^{-15}}{10\left(10^{-27}\right)}\\\\ &=10^{11}\:\text{atoms} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Problem 1-31: The lifetime of a human vs the mean life of an extremely unstable atomic nucleus

Advertisements
Advertisements

PROBLEM:

How many times longer than the mean life of an extremely unstable atomic nucleus is the lifetime of a human? (Hint: The lifetime of an unstable atomic nucleus is on the order of  10-22 s .)


Advertisements
Advertisements

SOLUTION:

The lifetime of a human is 2×109 s, while the lifetime of an unstable atomic nucleus is 10-22 s.

Therefore, a human lifetime is much longer by

ThTn=2×109sec1022sec=2×1031times  (Answer) \frac{T_h}{T_n}=\frac{2\times 10^9\:\text{sec}}{10^{-22}\:\text{sec}}=2\times 10^{31}\:\text{times}\ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

Advertisements
Advertisements

Problem 1-30: The number of generations passed since the year 0 AD

Advertisements
Advertisements

PROBLEM:

A generation is about one-third of a lifetime. Approximately how many generations have passed since the year 0 AD?


Advertisements
Advertisements

SOLUTION:

We are looking for generations passed in history. The general assumptions are:

  • There are 1011 seconds in 1 history
  • In 1 generation, there is 1/3 of a lifetime.
  • In half a lifetime, there are 109 seconds

Therefore, the number of generations passed is

1 history=1history×1011sec1history×1generation13lifetime×0.5lifetime109sec=150generations  (Answer)\begin{align*} 1\ \text{history} & =1\:\text{history}\times \frac{10^{11}\:\text{sec}}{1\:\text{history}}\times \frac{1\:\text{generation}}{\frac{1}{3}\:\text{lifetime}}\times \frac{0.5\:\text{lifetime}}{10^9\:\text{sec}} \\ & =150\:\text{generations} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements

Problem 1-29: The number of heartbeats in a lifetime

Advertisements
Advertisements

PROBLEM:

How many heartbeats are there in a lifetime?


Advertisements
Advertisements

SOLUTION:

The general assumptions:

  • There is 1 heartbeat in 1 second
  • In half a lifetime, there are 109 seconds.

Therefore, in a lifetime, the number of heartbeats is

1lifetime=(1lifetime)(109sec0.5lifetime)(1heartbeat1sec)=2×109heartbeats  (Answer)\begin{align*} 1\:\text{lifetime} & =\left(1\:\text{lifetime}\right)\left(\frac{10^9\:\text{sec}}{0.5\:\text{lifetime}}\right)\left(\frac{1\:\text{heartbeat}}{1\:\text{sec}}\right) \\ & =2\times 10^9\:\text{heartbeats} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \end{align*}

Advertisements
Advertisements