Tag Archives: College Physics Complete Solution Manual

Solution Guides for College Physics by Openstax Banner

College Physics by Openstax

You can browse on the itemized questions with solutions of the College Physics by Openstax below. Also, you can buy the whole Complete Solution Manual here.


College Physics Cover of Chapter 14

Chapter 14: Heat and Heat Transfer Methods

College Physics Cover of Chapter 15

Chapter 15: Thermodynamics

College Physics Cover of Chapter 16

Chapter 16: Oscillatory Motion and Waves

College Physics Cover of Chapter 17

Chapter 17: Physics of Hearing

College Physics Cover of Chapter 18

Chapter 18:
Electric Charge and Electric Field

College Physics Cover of Chapter 19

Chapter 19:
Electric Potential and Electric Field

College Physics Cover of Chapter 20

Chapter 20:
Electric Current, Resistance, and Ohm’s Law

College Physics Cover of Chapter 21

Chapter 21: Circuits and DC Instruments

College Physics Cover of Chapter 22

Chapter 22:
Magnetism

College Physics Cover of Chapter 23

Chapter 23:
Electromagnetic Induction, AC Circuits, and Electrical Technologies

College Physics Cover of Chapter 24

Chapter 24:
Electromagnetic Waves

College Physics Cover of Chapter 25

Chapter 25: Geometric Optics

College Physics Cover of Chapter 26

Chapter 26: Vision and Optical Instrument

College Physics Cover of Chapter 27

Chapter 27: Wave Optics

College Physics Cover of Chapter 28

Chapter 28: Special Relativity

College Physics Cover of Chapter 29

Chapter 29: Introduction to Quantum Physics

College Physics Cover of Chapter 30

Chapter 30: Atomic Physics

College Physics Cover of Chapter 31

Chapter 31: Radioactivity and Nuclear Physics

College Physics Cover of Chapter 32

Chapter 32: Medical Applications of Nuclear Physics

College Physics Cover of Chapter 33

Chapter 33:
Particle Physics

College Physics Cover of Chapter 34

Chapter 34: Frontiers of Physics


Problem 6-1: Odometer reading based on the number of wheel revolutions


Semi-trailer trucks have an odometer on one hub of a trailer wheel. The hub is weighted so that it does not rotate, but it contains gears to count the number of wheel revolutions—it then calculates the distance traveled. If the wheel has a 1.15 m diameter and goes through 200,000 rotations, how many kilometers should the odometer read?


Solution:

The formula for the total distance traveled is

\Delta s=\Delta \theta \times r

Therefore, the total distance traveled is

\begin{align*}
\Delta s & =\left(200000\:\text{rotations}\:\times \frac{2\pi \:\text{radian}}{1\:\text{rotation}}\right)\left(\frac{1.15\:\text{m}}{2}\right) \\
\Delta s & =722566.3103\:\text{m} \\
\Delta s & =722.6\:\text{km} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

\end{align*}

Advertisements
Advertisements

College Physics by Openstax Chapter 5 Problem 1

A physics major is cooking breakfast when he notices that the frictional force between his steel spatula and his Teflon frying pan is only 0.200 N. Knowing the coefficient of kinetic friction between the two materials, he quickly calculates the normal force. What is it?


Solution:

The formula for friction is

f=\mu _{k\:}N

When we solve for the normal force, N, in terms of the other variables, we have

N=\frac{f}{\mu _k}

The coefficient of kinetic friction is 0.04. Therefore, the normal force is

\begin{align*}
N & =\frac{f}{\mu _k} \\
N & =\frac{0.200\:\text{newton}}{0.04} \\
N & =5.00\:\text{newton} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements

College Physics by Openstax Chapter 4 Problem 1


A 63.0-kg sprinter starts a race with an acceleration of 4.20 m/s2. What is the net external force on him?


Solution:

So, we are given mass, m = 63.0 \ \text{kg} , and acceleration, a = 4.20 \ \text{m/s}^2.

The net force has a formula 

\text{F}=\text{m}a

Substituting the given values, we have

\begin{align*}
F & = \left( 63.0 \ \text{kg} \right)\left( 4.20 \ \text{m/s}^2 \right) \\
F & = 265 \  \text{kg}\cdot \text{m/s}^2 \\
F & = 265 \ \text{N} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}
\end{align*}

Advertisements
Advertisements

College Physics by Openstax Chapter 3 Problem 1


Find the following for path A in Figure 3.52:
(a) The total distance traveled, and
(b) The magnitude and direction of the displacement from start to finish.

Figure 3.54 The various lines represent paths taken by different people walking in a city. All blocks are 120 m on a side
Figure 3.52 The various lines represent paths taken by different people walking in a city. All blocks are 120 m on a side


Solution:

Part A

The total distance traveled is 

\begin{align*}

\text{d} & =\left(3\times 120\ \text{m}\right)+\left(1\times 120\:\text{m}\right) \\
\text{d} & =480\:\text{m}  \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}\\

\end{align*}

Part B

The magnitude of the displacement is 

\begin{align*}

\text{s }& =\sqrt{\left( s_x \right)^{2\:}+\left( s_y \right)^2} \\
\text{s }& = \sqrt{\left(1\times 120\:\text{m}\right)^2+\left(3\times 120\:\text{m}\right)^2} \\
\text{s }& = 379\ \text{m} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}

\end{align*}

The direction is

\begin{align*}

 \theta & = \tan^{-1}\left(\frac{s_x}{s_y}\right) \\
\theta & = \tan^{-1}\left(\frac{1\times 120\:\text{m}}{3\times 120 \ \text{m}}\right) \\
\theta & =71.6^{\circ} ,\:\text{E of N} \ \qquad \ {\color{DarkOrange} \left( \text{Answer} \right)}

\end{align*}

Advertisements
Advertisements

College Physics by Openstax Chapter 2 Problem 48


A very strong, but inept, shot putter puts the shot straight up vertically with an initial velocity of 11.0 m/s. How long does he have to get out of the way if the shot was released at a height of 2.20 m, and he is 1.80 m tall?


Solution:

The known values are: y_0=2.20\:\text{m}; y=1.80\:\text{m}; v_0=11.0\:\text{m/s}; and a=-9.80\:\text{m/s}^2

We are going to use the formula

 \Delta y=v_0t+\frac{1}{2}at^2

Substituting the given values:

\begin{align*}
 \Delta y & =v_0t+\frac{1}{2}at^2 \\
1.80\:\text{m}-2.20\:\text{m} & =\left(11.0\:\text{m/s}\right)t+\frac{1}{2}\left(-9.80\:\text{m/s}^2\right)t^2 \\
-0.40\:\text{m} & =\left(11.0\:\text{m/s}\right)t-\left(4.90\:\text{m/s}^2\right)t^2 \\
4.90t^2-11t-0.40 & =0
\end{align*}

Using the quadratic formula solve for t, we have

\begin{align*}
t & =\frac{-\left(-11\right)\pm \sqrt{\left(-11\right)^2-4\left(4.90\right)\left(-0.40\right)}}{2\left(4.90\right)} \\
\end{align*}
 t=2.28\:\text{sec}\:\:\:\:\:\text{or}\:\:\:\:\:\:t=-0.04 \ \text{sec}

We can discard the negative time, so

t=2.28\:\text{s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

Advertisements
Advertisements

College Physics by Openstax Chapter 2 Problem 47


(a) Calculate the height of a cliff if it takes 2.35 s for a rock to hit the ground when it is thrown straight up from the cliff with an initial velocity of 8.00 m/s.

(b) How long would it take to reach the ground if it is thrown straight down with the same speed?


Solution:

Part A

Refer to the figure below.

The known values are: t=2.35\:\text{s}; y=0\:\text{m}; v_0=+8.00\:\text{m/s}; and a=-9.8\:\text{m/s}^2

Based on the given values, the formula that we shall use is

y=y_0+v_0t+\frac{1}{2}at^2

Substituting the values, we have

\begin{align*}
y & =y_0+v_0t+\frac{1}{2}at^2 \\
0\: & =y_0+\left(8.00\:\text{m/s}\right)\left(2.35\:\text{s}\right)+\frac{1}{2}\left(-9.80\:\text{m/s}^2\right)\left(2.35\:\text{s}\right)^2 \\
y_0 & =8.26\:\text{m} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)\\
\end{align*}

Therefore, the cliff is 8.26 meters high.

Part B

Refer to the figure below

The knowns now are: y=0\:\text{m}; y_0=8.26\:\text{m}; v_0=-8.00\:\text{m/s}; and a=-9.80\:\text{m/s}^2

Based on the given values, we can use the formula

y=y_0+v_0t+\frac{1}{2}at^2

Substituting the values, we have

\begin{align*}
y & =y_0+v_0t+\frac{1}{2}at^2 \\
0\:\text{m} & =8.26\:\text{m}+\left(-8.00\:\text{m/s}\right)t+\frac{1}{2}\left(-9.80\:\text{m/s}^2\right)t^2 \\
4.9 t^2+8t-8.26 & =0 \\
\end{align*}

Using the quadratic formula to solve for the value of t, we have

\begin{align*}
t &=\frac{-8\pm \sqrt{\left(8\right)^2-4\left(4.9\right)\left(-8.26\right)}}{2\left(4.9\right)} \\
t &=0.717\:\text{s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements

College Physics by Openstax Chapter 2 Problem 45


A dolphin in an aquatic show jumps straight up out of the water at a velocity of 13.0 m/s.(a) List the knowns in this problem. (b) How high does his body rise above the water? To solve this part, first note that the final velocity is now a known and identify its value. Then identify the unknown, and discuss how you chose the appropriate equation to solve for it. After choosing the equation, show your steps in solving for the unknown, checking units, and discuss whether the answer is reasonable.(c) How long is the dolphin in the air? Neglect any effects due to his size or orientation.


Solution:

We will treat the downward direction as negative, and the upward direction as positive.

Part A

The known values are:a=-9.80\:\text{m/s}^2; v_0=13\:\text{m/s}; and y_0=0\:\text{m}.

Part B

At the highest point of the jump, the velocity is equal to 0. For this part, we will treat the initial position at the moment it jumps out of the water, and the final position at the highest point. Therefore, v_f=0 \text{m/s}.

The unknown is the final position, y_f. We are going to use the formula

\left(v_f\right)^2=\left(v_0\right)^2+2a\Delta y \\
\text{or} \\
\left(v_f\right)^2=\left(v_0\right)^2+2a\left(y_f-y_0\right)

Solving for y_f in terms of the other variables:

y_f=\frac{\left(v_f\right)^2-\left(v_0\right)^2}{2a}+y_0

Substituting the given values:

\begin{align*}
y_f & =\frac{\left(v_f\right)^2-\left(v_0\right)^2}{2a}+y_0 \\
y_f & =\frac{\left(0\:\text{m/s}\right)^2-\left(13.0\:\text{m/s}\right)^2}{2\left(-9.80\:\text{m/s}^2\right)}+0\:\text{m} \\
y_f & =8.62\:\text{m}+0\:\text{m} \\
y_f & =8.62\:\text{m} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

This value is reasonable since dolphins can jump several meters high out of the water. Usually, a dolphin measures about 2 meters and they can jump several times their length.

Part C

The unknown is time, \Delta t. We are going to use the formula

v_f=v_0+at

Solving for time, \Delta t in terms of the other variables:

t=\frac{v_f-v_0}{a}

Substituting the given values:

\begin{align*}
t & =\frac{v_f-v_0}{a} \\
t & =\frac{0\:\text{m/s}-13.0\:\text{m/s}}{-9.80\:\text{m/s}^2} \\
t &=1.3625\:\text{s}
\end{align*}

This value is the time it takes the dolphin to reach the highest point. Since the time it takes to reach this point is equal to the time it takes to go back to the water, the time it is in the air is:

\begin{align*}
t_{air} & =2\times t \\
t_{air}&=2\times 1.3625\:\text{s} \\
t_{air}&=2.65\:\text{s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements

College Physics by Openstax Chapter 2 Problem 44


A rescue helicopter is hovering over a person whose boat has sunk. One of the rescuers throws a life preserver straight down to the victim with an initial velocity of 1.40 m/s and observes that it takes 1.8 s to reach the water. (a) List the knowns in this problem. (b) How high above the water was the preserver released? Note that the downdraft of the helicopter reduces the effects of air resistance on the falling life preserver, so that an acceleration equal to that of gravity is reasonable.


Solution:

We will treat the upward direction as positive, and the downward direction as negative.

Part A

The known values are: a=-9.80 \text{m/s}^2; v_0=-1.40\:\text{m/s}; \Delta t=1.8\:\text{s}; and y_f=0\:\text{m}

Part B

We are looking for the initial position, y_0. We are going to use the formula

\Delta y=v_{0y}t+\frac{1}{2}at^2 
\\
\text{or}
\\
y_f-y_0=v_{0y}t+\frac{1}{2}at^2

Solving for y_0 in terms of the other variables:

y_0=y_f-v_{0y}t-\frac{1}{2}at^2

Substituting the given values:

\begin{align*}
y_0 & =y_f-v_{0y}t-\frac{1}{2}at^2 \\
y_0& =0-\left(-1.4\:\text{m/s}\right)\left(1.8\:\text{s}\right)-\frac{1}{2}\left(-9.80\:\text{m/s}^2\right)\left(1.8\:\text{s}\right)^2 \\
y_0&= 0-\left(-1.4\:\text{m/s}\right)\left(1.8\:\text{s}\right)-\frac{1}{2}\left(-9.80\:\text{m/s}^2\right)\left(1.8\:\text{s}\right)^2 \\ 
y_0& = 0+2.52\:\text{m}+15.876\:\text{m} \\
y_0& =18.396\:\text{m} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \\
\end{align*}

Advertisements
Advertisements

College Physics by Openstax Chapter 2 Problem 43


A basketball referee tosses the ball straight up for the starting tip-off. At what velocity must a basketball player leave the ground to rise 1.25 m above the floor in an attempt to get the ball?


Solution:

It is our assumption that the player attempts to get the ball at the top where the velocity is zero.

The given are the following: v_{fy}=0 \ \text{m/s}; \Delta y=1.25 \ \text{m}; and a=-9.80 \ \text{m/s}^2.

We are required to solve for the initial velocity v_{0y} of the player. We are going to use the formula

\left(v_{fy}\right)^2=\left(v_{oy}\right)^2+2a\Delta y

Solving for v_{oy} in terms of the other variables:

v_{oy}=\sqrt{\left(v_{fy}\right)^2-2a\Delta y}

Substituting the given values:

\begin{align*}
v_{oy} & =\sqrt{\left(v_{fy}\right)^2-2a\Delta y} \\
v_{oy} & = \sqrt{\left(0\:\text{m/s}\right)^2-2\left(-9.80\:\text{m/s}^2\right)\left(1.25\:\text{m}\right)} \\
v_{oy} & =4.95 \ \text{m/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Advertisements
Advertisements