Tag Archives: Significant Figures

Physics for Scientists and Engineers 3E by R. Knight, P1.23


Convert the following to SI units:

a) 6.15 ms

b) 27.2 km

c) 112 km/h

d) 72 µm/ms


Continue reading
Solution Guide to College Physics by Openstax Chapter 1 Banner

Chapter 1: Introduction: The Nature of Science and Physics

Advertisements

Physical Quantities and Units

Advertisements

Accuracy, Precision, and Significant Figures

Advertisements

Approximation


Advertisements
Advertisements

Problem 1-28: Calculating the volume and its uncertainty of a car piston with dimensional uncertainties

Advertisements
Advertisements

PROBLEM:

A car engine moves a piston with a circular cross section of  7.500±0.002 cm diameter a distance of 3.250±0.001 cm  to compress the gas in the cylinder.

(a) By what amount is the gas decreased in volume in cubic centimeters?

(b) Find the uncertainty in this volume.


Advertisements
Advertisements

SOLUTION:

Part A

The average volume is

\begin{align*}
V & =\pi r^2h \\
& =\pi \left(\frac{7.5\:\text{cm}}{2}\right)^2\left(3.25\:\text{cm}\right) \\
& =143.5806\:\text{cm}^3 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \\
\end{align*}

Part B

Solve for the percent uncertainties of each dimension

\begin{align*}
\%\:unc_r & =\frac{0.002\:\text{cm}}{7.500\:\text{cm}}\times 100\%=0.027\% \\
\%\:unc_h & =\frac{0.001\:\text{cm}}{3.25\:\text{cm}}\times 100\%=0.031\% \\
\end{align*}

The percent uncertainty in the volume is the combined effect of the uncertainties of the dimensions

\text{\%\:unc}_{vol}=0.027\%+0.031\%=0.058\%

The uncertainty in the volume is

 \delta _{vol}=\frac{0.058}{100}\times 143.5806=0.083\:\text{cm}^3  \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

Advertisements
Advertisements

Problem 1-27: Calculating the area and its uncertainty of a room with a given dimensional uncertainties

Advertisements
Advertisements

PROBLEM:

The length and width of a rectangular room are measured to be 3.955 ±0.005 m and 3.050 ± 0.005 m . Calculate the area of the room and its uncertainty in square meters.


Advertisements
Advertisements

SOLUTION:

The average area of the room is

\begin{align*}
A & =l\times w \\
& =3.955\:\text{m}\times 3.050\:\text{m} \\
& =12.06\:\text{m}^2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \\
\end{align*}

Compute for the percent uncertainties of each dimension.

\begin{align*}
\text{\%\:unc}_{width} & =\frac{0.005\:\text{m}}{3.050\:\text{m}}\times 100\%=0.1639\% \\
\text{\%\:unc}_{length} & =\frac{0.005\:\text{m}}{3.955\:\text{m}}\times 100\%=0.1264\:\%
\end{align*}

The percent uncertainty in the area is the combined effect of the uncertainties of the length and width.

\text{\%\:unc}_{area}=0.1639\%+0.1264\%=0.2903\%

The uncertainty in the area is

\delta _{area}=\frac{0.2903\:\%}{100\:\%}\times 12.06\:\text{m}^2=0.035\:\text{m}^2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

Therefore, the area is

A=12.06\pm 0.035\:\text{m}^2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

Advertisements
Advertisements

Problem 1-26: Uncertainty and percent uncertainty of a pound-mass (lbm) unit

Advertisements
Advertisements

PROBLEM:

When non-metric units were used in the United Kingdom, a unit of mass called the pound-mass (lbm) was employed, where 1 lbm=0.4539 kg.

(a) If there is an uncertainty of 0.0001 kg in the pound-mass unit, what is its percent uncertainty?

(b) Based on that percent uncertainty, what mass in pound-mass has an uncertainty of 1 kg when converted to kilograms?


Advertisements
Advertisements

SOLUTION:

Part A

The percent uncertainty of the lbm is

\text{\%\:uncertainty}_{\text{lbm}}=\frac{0.0001\:\text{kg}}{0.4539\:\text{kg}}\times 100\%=0.022\% \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

Part B

For uncertainty of 1 kg, the corresponding lbm is

\begin{align*}
\text{lbm} & =\frac{\delta_{\text{lbm}}}{\text{\%\:uncertainty}_{\text{lbm}}}\times 100\% \\
\\
 & =\frac{1\:\text{kg}}{0.02\:\%}\times \frac{1\:\text{lbm}}{0.04539\:\text{kg}}\times 100\% \\
\\
& =11015.64\:\text{lbm} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) 
\end{align*}

Advertisements
Advertisements

Problem 1-25: Solving for the uncertainty of the volume of a box with dimensional uncertainties

Advertisements
Advertisements

PROBLEM:

The sides of a small rectangular box are measured to be 1.80±0.01 cm, 2.05±0.02 cm, and 3.1±0.1 cm long. Calculate its volume and uncertainty in cubic centimeters.


Advertisements
Advertisements

SOLUTION:

The average volume of the box is

\begin{align*}
\text{Volume} & =l\times w\times h \\
& =\left(1.80\:\text{cm}\right)\left(2.05\:\text{cm}\right)\left(3.1\:\text{cm}\right) \\
&= 11.4\:\text{cm}^3 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \\
\end{align*}

The percent uncertainty for each of the dimensions:

\begin{align*}
1.80\pm 0.01\:\text{cm}\:\rightarrow & \:\frac{0.01\:\text{cm}}{1.80\:\text{cm}}\times 100\%=0.556\% \\
\\
2.05\pm 0.02\:\text{cm}\:\rightarrow & \:\frac{0.02\:\text{cm}}{2.05\:\text{cm}}\times 100\%=0.976\% \\
\\
3.1\pm 0.1\:\text{cm}\:\rightarrow &\:\frac{0.1\:\text{cm}}{3.1\:\text{cm}}\times 100\%=3.226\% \\
\end{align*}

The percent uncertainty in the volume of the box is calculated by adding the percent uncertainties of the dimensions.

\begin{align*}
\%\:\text{uncertainty}_{\text{volume}} & =0.556\%+0.976\%+3.226\% \\
& =4.758\%
\end{align*}

The uncertainty of the volume is

\begin{align*}
\delta _{\text{volume}} & =0.04758\times 11.4\:\text{cm}^3 \\
& =0.54\:\text{cm}^3 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)
\end{align*}

Therefore, the volume is

\text{Volume}=11.4\pm 0.54\:\text{cm}^3 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

Advertisements
Advertisements

Problem 1-24: Calculating uncertainties in distance, time and speed of a marathon runner

Advertisements
Advertisements

PROBLEM:

A marathon runner completes a 42.188-km course in 2 h, 30 min, and 12 s. There is an uncertainty of 25 m in the distance traveled and an uncertainty of 1 s in the elapsed time.

(a) Calculate the percent uncertainty in the distance.

(b) Calculate the uncertainty in the elapsed time.

(c) What is the average speed in meters per second?

(d) What is the uncertainty in the average speed?


Advertisements
Advertisements

SOLUTION:

Part A

The percent uncertainty in the distance is

\begin{align*}
\text{\%\:uncertainty}_{\text{distance}} & =\frac{25\:\text{m}}{42.188\:\text{km}}\times \frac{1\:\text{km}}{1000\:\text{m}}\times 100\% \\
 & =0.0593\% \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \\
\end{align*}

Part B

The uncertainty in time is

\begin{align*}
\text{\%\:uncertainty}_{\text{time}} & =\frac{1\:\text{s}}{9012\:\text{s}}\times 100\% \\
& =0.0111\% \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \\
\end{align*}

Part C

The average speed is

\begin{align*}
\text{average speed} & =\frac{42.188\:\text{km}}{9012\:\text{s}}\times \frac{1000\:\text{m}}{1\:\text{km}} \\
& = 4.681\:\text{m/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \\
\end{align*}

Part D

The percent uncertainty in the speed is the combination of uncertainties of distance and time.

\begin{align*}
\text{\%\:uncertainty}_{\text{speed}} & =\text{\%\:uncertainty}_{\text{distance}}+\text{\%\:uncertainty}_{\text{time}} \\
& =0.0593\%+0.0111\% \\
&  =0.0704\% \\
\end{align*}

Therefore, the uncertainty in the speed is

\begin{align*}
\delta _{speed} & =\frac{0.0704\%}{100\%}\times 4.681\:\text{m/s} \\
& = 0.003\:\text{m/s} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right) \\
\end{align*}

Advertisements
Advertisements

Problem 1-23: Calculating for the time it takes a marathon runner to finish 26.22 miles given a speed of 9.5 mi/h

Advertisements
Advertisements

PROBLEM:

If a marathon runner averages 9.5 mi/h, how long does it take him or her to run a 26.22-mi marathon?


Advertisements
Advertisements

SOLUTION:

The relationship of the velocity (or speed), time, and distance is

v=\frac{d}{t}

So, by rearranging the equation, we can equate time to

t=\frac{d}{v}

By direct substitution

t=\frac{26.22\:\text{mi}}{9.5\:\text{mi/hr}}=2.76\:\text{hours} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

Advertisements
Advertisements

Problem 1-22: Solving for the area of a circle with a given diameter

Advertisements
Advertisements

PROBLEM:

What is the area of a circle 3.102 cm in diameter?


Advertisements
Advertisements

SOLUTION:

The area of a circle can be computed using the formula below when the radius is given.

A=\pi r^2

We also know that the radius is half the diameter, so the area can be calculated using the formula,

A=\pi \left(\frac{d}{2}\right)^2

So, by direct substitution

A=\pi \left(\frac{3.102\:\text{cm}}{2}\right)^2=7.557\:\text{cm}^2 \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

The area of the circle is 7.557 square centimeters.


Advertisements
Advertisements

Problem 1-21: Counting heart rate with uncertainties in number of beats and time

Advertisements
Advertisements

PROBLEM:

A person measures his or her heart rate by counting the number of beats in 30 s. If 40±1  beats are counted in 30±0.5 s, what is the heart rate and its uncertainty in beats per minute?


Advertisements
Advertisements

SOLUTION:

In order to compute for the heart rate in beats per minute, we need to solve for the base. The base is

A=\frac{40\:\text{beats}}{30\:\text{sec}\:}\times \frac{60\:\text{sec}}{1\:\text{min}}=80\:\text{beats/min}

Then we compute for the percent uncertainty by combining the uncertainties of the number of beats and time. That is

\begin{align*}
\text{\%\:uncertainty} & =\left( \frac{1\:\text{beat}}{40\:\text{beats}}\times 100\% \right)+ \left(\frac{0.5\:\text{s}}{30.0\:\text{s}}\times 100\% \right)\\
&=2.5\%+1.7\% \\
& =4.2\% \\

\end{align*}

Based on this percent uncertainty, we compute for the tolerance

\begin{align*}
\delta _A & =\frac{\text{\%\:uncertainty}}{100\:\%}\times A \\
& = \frac{4.2 \%}{100 \%} \times 80 \ \text{beats/min} \\
& =3.4\:\text{beats/min}\\
\end{align*}

Therefore, the heart rate is

\displaystyle 80\pm 3\:\text{beats/min} \ \qquad \ \color{DarkOrange} \left( \text{Answer} \right)

Advertisements
Advertisements